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EVALUATION OF DENSITIES AND DISTRIBUTIONS VIA HERMITE AND GENERALIZED
LAGUERRE SERIES EMPLOYING HIGH-ORDER EXPANSION COEFFICIENTS
DETERMINED RECURSIVELY VIA MOMENTS OR CUMULANTS

INTRODUCTION

"In the theoretical analysis of performance of some systems with
nonlinearities and/or memory, it often happens that the only statistics about
the decision (or output) random variable of interest that can be easily found
are the moments, or in other cases, the cumulants. Explicit relations for the
low-order expansion coefficients in Edgeworth or Gram-Charlier series are
available in terms of the available moments or cumulants [1, pp. 172 and 191},
[2, pp. 223 and 226], [3, pp. 157 and 159]. However, for higher-order moments
and cumulants, these explicit nonrecursive relations are very tedious to

derive, become extremely lengthy, and are not practical to use.

de will address the problem of obtaining accurate high-order series
expansion approximations of the probability density function and cumulative
distribution function of a random variable of interest, in terms of the
available moments or cumulants of that random variable. The necessity of
being able to approximate probability density functions and cumulative
distribution functions from knowledge of either the moments or the cumulants,
is that some physical problems have these particular statistics as natural and
convenient starting points. For example, if a physical processor sums
together a number of independent Rician random variates, the characteristic
function and cumulants of the individual random variables or their sum are not

available in any useful analytic form; however, the high-order moments of an
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individual Rician variate can be easily and accurately evaluated by
recurrence, and thereby the moments of the sum can be obtained. Conversely,
for shot noise with random amplitude and duration modulation, the probability
density function is not readily available, whereas the characteristic function

is, and the cumulants are simple to evaluate [4, appendix C].

The particular series expansions we employ are based on the two special

classes of weighting functions

2
w(u) = —-ljz—-exp - LE:%l— for all u Hermite (1)
(2n)°8 28
and
a
w(u) = E—;%%Ei:ylél- for u > 0 generalized Laguerre. (2)
g~ [atl)

The orthonormal polynomials associated with these weightings are directly
related to the Hermite and generalized Laguerre polynomials, respectively
[5, 22.2.15 and 22.2.13]. The weightings each have two free parameters, a and
B, which can be manipulated to advantage in obtaining finite (high-order)
series expansions which well approximate a given (unknown) probability density

function and cumulative distribution function.

The question of when a set of moments uniquely determines the probability
density function is a difficult one; see, for example, [3, pp. 109-112 and
179]. Also, the convergence of the series is very involved [2, pp. 223 and
2587, [3, pp. 161-163]. But, even if the series is divergent, use of a
Timited number of expansion coefficients often gives a satisfactory

approximation to the desired probability density function [3, p. 167]. We
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presume here that the moments do uniquely determine the probability density
function and are buoyed in that respect by the comment [3, p. 87] that most

distributions in statistical- practice do possess this property.

The main idea in the series expansion approach here is not necessarily to
get as many terms as possible, but rather to get as rapid convergence as
possible of the series. If a particular choice of weighting parameters a and
g results in sufficiently small expansion coefficients, say, at order 10, this
is better than another choice of a and 8 where 20 or 30 terms are required for
the same size coefficients. In fact, if « and 8 could be chosen such that the
series terminated (zero coefficients) after a few terms, that would be ideal;
however, this is not the case, and in fact, the choice of « and 8 requires

some trial-and-error to achieve rapidly decreasing coefficients.

The expansion coefficients of a given probability density function, in an
orthonormal set of Hermite or generalized Laguerre polynomials, are denoted by
{bégg, where N is the number of available or known moments or cumulants.

Very often, the choice of a and 8 in (1) or (2) has been made such that

bl = 0 and by, = 0, for purposes of analytic simplicity and for hopeful

early termination of the series; see for example [1, pp. 171 and 191],

(2, p. 223], [3, p. 159]. However, it will be demonstrated that this is
generally not the best choice, and that more rapidly decaying coefficients can
be achieved by other (mismatched) values of a and 8, which must be searched
for numerically; this possibility is also mentioned in [3, p. 164]. In fact,
an example will be given which illustrates that the choice of parameters a and
B to make expansion coefficients bl and by zero, can in fact, lead to a

divergent Hermite series.
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Depending on the available information about the probability density
function, i.e., moments or cumulants, a variety of methods will be given for
determining the expansion coefficients {b&}. In‘particu1ar, for both the
Hermite and generalized Laguerre series, we can get the coefficients by three
different procedures:

(a) recursively via cumulants,

(b) directly via moments,

(c) recursively via moments.
The reason for having these alternatives is that the calculation of expansion
coefficients {ba} for high-order n invariably runs into large round-off
error. In order to reduce this round-off error, the amount of
number-crunching on the computer should be minimized, and any spurious
transformations between moments and cumulants should be avoided if possible.
Thus it is desireable to have techniques which can accomplish the desired goal
of evaluating expansion coefficients {bﬁ} as directly as possible from the
available information. The use of different alternatives also enables
comparisons of the computed expansion coefficients and thereby furnishes
quantitative assessment of the amount of round-off error. Recursive
inter-relationships between moments, central moments, and cumulants are given

in [6], including cases of two dependent random variables.
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FUNDAMENTAL EQUATIONS

DEFINITION OF STATISTICS

Suppose a function p has known moments*

o = j‘du u" p(u) forO<n<N. (3)

The function p need not have unit area, i.e., o # 1 is allowed, and p can
become negative at some arguments u. Nevertheless, for convenience, and since
most of our applications are to random variables, we shall refer to p as a

probability density function, and to its running integral
w

P(u) = f ot e (4)

—o0

as a cumulative distribution function. We shall presume that Mg > 0 in all

cases.

The characteristic function corresponding to probability density function

p is the Fourier transform

£(ig) = J\du exp(igu) plu) - (5)
When f is expanded in a power series, the result is
[\%]
. son
£(i5) = > u (ig)"n! (6)
n=0

* Integrals without limits are over the range of nonzero integrand.
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in terms of the moments in (3). Alternatively, if fn f is expanded in a power

series,

o0
Anfig) = > X (5", (7)
n=0

where the quantities £ZA} are the cumulants of p or f. Observe that

generally, to the lowest three orders,

'Z0=,an(0)=£n 1-10$0,

=
"
l

oo MM
Mo _(E> ’ : )

The available information on probability density function p will be
either

moments {uégg or cumulants %};hg : (9)

Whichever is available, we wish to get high-order accurate approximations to p
and cumulative distribution function P in (4); that is, values of N in the

order of 10 to 100 are of interest.
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WEIGHTING FUNCTION PROPERTIES

We seiect a nonnegative weighting function w such that

w(u) > 0 at least where p(u) # 0 . (10)

We also disallow any impulses in w. The moments of weighting w are defined

analogously to (3) as
v, = S\du u" w(u) forn >0 ; (11)

it is presumed that these quantities can be evaluated for as large n as

required.

Suppose weighting w has r free parameters (plus a scaling parameter). It
might then seem beneficial to choose them such that the moments of w and p are

approximately equal,

mn

\Y

T for1<n<r (plus v uo) : (12)

for then the abscissa scales of w and p would tend to match. However, (12)
will turn out to be not so desireable, and the choice of the r weighting
parameter values should be based on another criterion. The ordinate scale of
w is actually immaterial, since the expansion coefficients {b&% will absorb
this scaling; so henceforth we presume that vg = 1 with no loss of

generality.



TR 7377
APPROXIMATION PROCEDURE

Let Qn be any n-th order polynomial, and approximate probability
density function p by function
N

pN(u) = w(u) = bn Qn(u) where w(u) > 0 , (13)

where {pg&g are the expansion coefficients. Define weighted squared

error

£y = [ du vlw) [pw)pyw)]° -
N

- Ja v bt = b g wi?, (14)
n=

where error-weighting vy is nonnegative. If we minimize EN by choice of
expansion coefficients {bggg, there follows the set of 1linear equations
(15)
<N

n

N
= b, Jau o) w20) Q) ) = [ 1) wle) plw) Qo) for v <k

In order to use only the available information in (9) about p, the right-hand

side of (15) must simplify according to the selection

y(u) ='W%JT where w(u) > 0 (and arbitrary elsewhere). (16)

Furthermore, since constant K merely scales error EN, and appears on both

sides of (15), we can set K = 1 without loss of generality. Then (14) becomes
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N 2
EN = j‘du w(u)[%%%% - = bn Qn(ui} where w(u) >0 , (17)

and (15) reduces to

N
,% bnjdu w(u) Q(u) Q (u) = fdu p(u) Qu) for O <k <N  (18)

In general, this is N*1 simultaneous linear equations in the N+1 unknowns
{béﬁg. The choice Qk(u) = uk would lead to an apparently simple set

of equations, when (11) and. (3) are used. However, a few numerical examples
quickly reveals that they are very ill-conditioned, due to the character of

the nondiagonal matrix with elements

J\du w(u) Qk(u) Qn(u) for 0 < k,n < N (19)

that appears on the left-hand side of (18). In order to avoid the significant
round-off error associated with solving such a system for large N, we choose
%ﬁhg to be a set of orthonormal polynomials with respect to weighting

w; i.e., (19) is 1 for k = n, and O otherwise. Also recall that

vy = 5‘du w(u) = 1 without loss of generality.

Equation (18) then reduces to an explicit relation for the expansion

coefficients:

bk = J‘du p(u) Qk(u) for0 <k < N, (20)

and (17) for the error becomes merely

2
EN=fdufl(é—‘)‘)- n% bﬁ, (21)
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It will be presumed that the integral in (21) is finite; otherwise, the
error would be infinite, which is a meaningless problem. This will put some
restrictions on the parameter choices of weighting w, since this error
integral depends on these parameters as well as on the given probability
density function p. The sum of squares in (21) must then be bounded, and in
fact affords a measure of the adequacy of approximation (13), by saturating

(at an apriori unknown value) for large N.

As N increases, the values of the lower-order expansion coefficients
{bg} in (20) do not change. Therefore they only have to be computed once
and do not have to be revised as more terms are added in series approximation

(13), i.e., larger N.
EQUALITY OF PROBABILITY DENSITY FUNCTION MUMENTS

A very important property of expansion (13) is obtained as follows:
N
fou gt pyw) = fau g ww) = v, g, -

n=

=b, = Jsdu Qk(u) p(u) for 0 <k <N, (22)

where we used, in order, (13), the orthonormality of (19), and (20). But
since Q is a k-th order polynomial, relation (22) states that approximation
Py has exactly the same moments as given probability density function p,

from order O through order N. This matching of moments between probability
density functions py and p has been achieved regardiess of the weighting w

and its particular parameter values. Furthermore, (22) holds independently of

whether the weighting-moment equalities in (12) are satisfied or not.

10
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The cumulative distribution function corresponding to approximation Py

is defined as

w w
N
PN(u) = jdt pN(t) = > b jdt w(t) Qn(t) . (23)

oo n=0 n — 00

Its utility depends on getting closed forms and simple recursions for the

general integral on the right-hand side.
PARAMETERS OF GIVEN PROBABILITY DENSITY FUNCTION p
The moments of p were defined in (3). It is useful to define three

important parameters of p:

Area A = ‘Ydu p(u) = (uo > 0, but need not be 1);

%o

s widtn & - | ulu20%0(0) Vz_ 22 7 (24)
- L fdu p(U) - IJO UO :

(Conversely, Hg = A, wp =AM, o, = A(M2+R2).) These parameters

depend on the probability density function p that we are trying to approximate
and can be computed from the available information (9). They are useful for
determining where the major concentration of p(u) lies on the u-scale, and

have obvious physical interpretations.

In terms of the cumulants of p defined. in (5)-(8), we have the

alternative expressions
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GENERAL RESULTS FOR THREE LOWEST-ORDER POLYNOMIALS Qn

(25)

The weighting function w and associated orthonormal polynomials satisfy

the following equation:

n kn °

jdu w(u) Q (u) Q (u) =s

Also we have weighting moments

v, = deu G wlu), with vy = 1.

It is then a straightforward matter to evaluate the three lowest-order

orthonormal polynomials:

Qo(u) i ]- 3
1
Qq (u) ‘D‘l'(“"’l) ,
Q(u) = 5 [“2("2“’%) = ulvgmvyvg) * ("3“1“’3)] ;

where

12

~N
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2./
0 = (vp=v))"
N 2 2 2"
D2 = (vz-vl) Ev4—v2)(v2—vl)-(v3—v2v1) ] . (30)

The general expansion coefficients in (20) then become

b0=u0’

1
bl = W(ul—\’luo) s

1 2 2
bZ = E ‘}2(\)2-\)1) - ul(v3—v2vl) + uo(\)3v1-—\)2)1 . (31)
A1l these results above are general and make no presumption about weighting
moment equalities such as (12).
SPECIAL CHOICES OF WEIGHTING PARAMETERS
Suppose that weighting w has free parameters that can be varied so as to
make the mean locations of w and p coincide (see (24)); that is,

let vy = (32A)

(The reason for the discrepancy with (12) is that we have set vg = 1 but

have allowed uy # 1.) Inspection of (31) gives the following:

2
u u u
0 2 1
then b1 =0 and b2 e s <§2 —-;—> vo = 5 | (328)
2 0 ug

13
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Conversely, (31) shows that requiring by = 0 forces the choice in (32A) for

Vi Thus equality of the first weighting moment vy of w with the first

(normalized) moment of probability density function p implies (and is implied

by) the vanishing of the first expansion coefficient bl'

not be a useful choice, but, whether adopted or not, has no bearing on the

This may or may

equality of probability density function moments already demonstrated in (22).

As a second special choice, suppose that weighting w has enough free

parameters that we can vary, so as to make the mean locations and rms widths

of w and p coincide (see (24)); that is

(Again we have used vg = 1.) Manipulation of (31) yields the following

conclusion:

then b1 =0 and b2 =0 .

(33A)

(338)

Conversely, imposition of (33B) implies the results in (33A), as may be seen

by reference to (31). (The apparent additional solution
vy = u%/ug = v% would yield an impulse for w and is disallowed.) Thus

equality of the first two weighting moments of w with the first two

(normalized) moments of probability density function p implies (and is implied

by) the vanishing of the first two expansion coefficients b1 and bZ'

common choice of weighting parameter values can be made if desired, but is not

necessary (or recommended) for series approximations by orthonormal

polynomials. The equality of probability density function moments in (22)

will hold whether (33) is true or nof.

14
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EXAMPLE OF DIVERGENT ERROR INTEGRAL FOR b1 = 0, by = 0

As a demonstration of what forcing expansion coefficients b1 and b2
equal to zero can do, consider probability density function

2 uY exp(—uzlwz)

p(u) = - for u >0 (y > -1, o > 0) (34)
o)
with moments
r| 1+l+n
u n _<___>_. 1 (35)

n- Y (16%%3)

This class of probability density functions includes the one-sided Gaussian,

Rayleigh, and Maxwell as special cases, for y = 0, 1, 2, respectively.

Consider also the Hermite weighting given in (1), which has moments
(11) equal to

v, = 1, vy = v, = a2+82 . (36)

If we now insist on property (33B), then (33A) yields

v, 2.2\ Pz(%’“l)
) T TR

But the leading integral in minimum error EN in (21) is convergent only if

(37)

pz(u)/w(u) decays sufficiently rapid for large u. We have from (34) and

(1), the dominant behavior

2 2
DZ(U)/W(U)oC exp(? g%— + !—2j> for large positive u , (38)
w 28

whereoC denotes proportionality, but disregards the exact scale factor and

subdominant behavior. Thus the integral in (21) is convergent only if

15
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NN

Y
4 (3 :
1< —>5 = 2(y*1) - 4——+1 . (39)
¢ N 2)
However, calculation of (39) reveals that this inequality is never satisfied
for any value of y > -1; the function on the right-hand side starts at 0 when

vy = -1, and increases monotonically towards 1 as y » +o0, behaving like

1 - 1/(4y) in this Timit.

Thus expansion of probability density function (34) according to a
Hermite weighting has an infinite error integral (21) (and perhaps a divergent
series expansion) regardless of the values of y and w in the true probability
density function, if we insist on expansion coefficients bl = b2 = 0. VYet
if we relax requirement (338), and choose 8 according to (39) such that

B > w/2, the error integral in (21) is certainly finite, regardiess of a.

However, making the error integral in (21) finite is not the whole story,
in so far as realizing useful approximations to the probability density
function or cumulative distribution function. An example of probability
density function (34) was taken with y = 3, w = 1. When o and 8 were chosen
according to (33) and (37) (giving 8 = .48 < .5 = w/2), the expansion
coefficients {bﬂ} initially decreased to approximately 1lE-3 at n = 40 terms,
and then diverged; yet a plot of the approximate exceedance distribution
function obtained by a Hermite expansion overlaid the exact answer down to the
1E-16 level. On the other hand, when the weighting parameters in the Hermite

expansion were chosen as* o« = 0, g = .7 > .5 = w/2, giving b1 4 0 and

*This is example B in a later section

16
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b2 +# 0, the expansion coefficients {b&} decreased to the 1lE-4 level at
n = 70 before round-off error became dominant; despite this apparent
improvement in coefficient Tevel, the approximate exceedance distribution
function overlaid a plot of the exact result down to the 1lE-10 probability
level, which is several orders of magnitude worse than the above result. Thus
emphasis on getting a convergent error integral in (21) may not always be

desired.

For Hermite weighting (1) and the class of probability density functions
which decay as exp(-uq) as u » *o0, the error integral is always convergent
if ¢ > 2, and always divergent if g < 2. So an exponential probability
density function, like uY exp(-u/w) for u > 0, always yields a divergent

error integral when expanded in a Hermite series.

For generalized Laguerre weighting (2), it is necessary to consider
u =0+ and u = +® separately. If probability density function p behaves like
uY as u » 0+, then a finite error integral requires that we choose
a< 1+ 2y. Coupled with the finite area restriction on weighting w, a range
of values of a is allowed, namely, -1 < a < 1 + 2y; this range always exists
since y > -1 is necessary for the probability density function itself to have

finite area.

If also the probability density function behaves as exp(-u/w) as u » +oo,
then a finite error integral with generalized Laguerre weighting requires that
we choose B > w/2. So the range of choice of g is open on the large side,
whereas that for a is a limited one, for this particular class of probability

density functions.

17



TR 7377
HERMITE EXPANSION

In this section, we will deal exclusively with weighting (1),

w(u)

lu-_a>
s ¢ < 5 for all u (8 >0) ,

where

-2

(2+%) exp(—x2/2), §(x) = jxdt é(t) .

—00

1]

#(x)
This weighting has two free parameters, « and g, and moments

2

v0=l, vy = @ \J2=a,+8

If vy and v, are specified, the parameters must then satisfy a = vy,

2)1/2.

B = (vp - vy However, we shall keep « and 8 general and unspecified.

PROPERTIES OF POLYNOMIALS AND EXPANSIONS

The orthonormal polynomials associated with weighting (40) are the

Hermite polynomials [5, 22.1.2 and 22.2.15]

—'/2

Qn(u) s Hen<5§5 (n!) forn >0 .

The expansion coefficients are given by (20) as

bn = 5.du p(u) Qn(u) = (n'.)_l./2 <, forn >0,

18
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where we define

c, = j~du p(u) Hen<gg;) forn > 0. (45)

The approximate probability density function then follows from (13) in the form

N N
pylw) =wl) > boq ) =Lofse) S o ne ) (48)
n=0 n=0
where we used (40), (43), (44), and defined
(n!)ll2 a, =b, = (nl).l/2 c, forn>0. (47)

These three different coefficients in (44)-(47) are introduced for convenience
in further equation manipulations. Expansion coefficient bn is the

geometric mean of auxiliary coefficients a, and o (with polarity).

Expansion (46) is also called a Gram-Charlier series of type A [2, p. 222],
[3, p. 156].

The approximate cumulative distribution function corresponding to (46) is

w N W
o= fomor >0 [ 05 (5
n= —00

N T N
- S e | e a0 ey =3, B ST S e (ML G8)
n=0 —00 n=1
where
T (49)

and we used (41) and [5, 22.11.8].

19
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The Hermite polynomials {Heé}satisfy the recurrence [5, 22.7.14]
Hen(x) = X Hen_l(x) - (n-1) Hen_z(x) forn> 2, (50)

with starting values Hey(x) = 1, Hel(x) =x [5, 22.3.11]. The highest-
order term in Hen(x) is xn, with coefficient 1 [5, 22.1.2 and 22.3.11].
The magnitude of the term multiplying bn in (46) has an envelope that decays

1/4

approximately as n~ with n, regardless of argument u. This may be seen

by using (47) and (49) to get

n—l/4

-1/2
a, te (T) = bn(nl)'”2 He (T)<C bnGnﬂ/z e'n> (nje)"? - b,

as n >+oe, for all T, (50A)

where we also used [5, 6.1.39 and 22.5.18] and [7, 8.22.8]. Here,oC denotes
proportionality and we have taken the magnitude of the terms; the exact scale
factor of proportionality will be presented in a later section where the
errors of the approximations are estimated. So if bn were to decay faster

3/4

than n™>'", the probability density function series in (46) would converge

absolutely.

Conditions are better for the cumulative distribution function series in

(48); namely, based on the above result, there follows (for the envelope)

- 1 _1/2 _ -]-/2 - 1 —1/2 -
a Hen_l(T) = bn(n.) Hen_l(T) =b n [(n=1):] Hen_l(T) =
£ b /278 o 073t ag 0 s veo, for a1l T (508)
Thus if b decays faster than n_l/4, the cumulative distribution function

series converges absolutely. Furthermore, if the leading error integral in

20
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(21) is finite, the sum of b% must be finite, meaning that bn must decay
faster than n=1/2. So we can conclude that if the error integral is finite,
the Hermite series for the cumulative distribution function in (48)
converges. (Notice that this particular decay n-1/2 of bn is not
sufficiently fast to make the same conclusion about the Hermite series for the

probability density function in (46).) The above are sufficient conditions on

expansion coefficients {bn}, and are not necessary.

EXPANSION OF CHARACTERISTIC FUNCTION f

The coefficients a and c, were defined in (45) and (47). Then the sum

o 0 1 SO n
n o_ n o_
a W = :EE ST Cow _:ZE T \gdu p(u) He ( >
n=0 n=0 n=0
®© | .
= fdu p(u) 2 -‘:]’—.— He (%) = jdu p(u) exp(g-;—“- W= w2> =
n=0

exp(— % we —g ) f(%—) , (51)

where f is the characteristic function, and where we used (45), [5, 22.5.19

and 22.9.17], and (5). Letting w = 8z, we have

fore) o0
f(z) exp(—uz —%6222>- E an E rlT . (52)

n=0 =0

o

Thus {?AS and {pﬁ} are the coefficients in these power series expansions

of the function f(z) exp(-az - 8222/2), where f is the characteristic
function corresponding to probability density function p, and a and B are

arbitrary. A special case of (52) is given in [2, 17.6.10].
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Collecting (46) and (52) together for comparison, and assuming that

Pp > P as N » +20, we have
o0

p(u) = ‘é‘ é(u—?-> ZO a Hen(u;>,
n=
f(i$) = exp( -3 §’> §: a (i8$)" . (53)

n=0

Thus expansion of probability density function p in an infinite Hermite series
is equivalent to an expansion of a modified form of the characteristic
function in a power series, according to (53). Equations (51)-(53) will serve
as very convenient starting points for the derivation of several alternative
recurrences for the expansion coefficients {an}. Notice that weighting
parameters a and g are completely unrestricted in (52) and (53), except that

g > 0.

An analogous result holds for N finite, but must be derived in a
different fashion, because we no Tonger can use infinite sum [5, 22.9.17].
Define the Fourier transform of (46) as the N-th order approximation to the

characteristic function:

fy(i§) = Sdu exp(igu) pylu) =

a, S‘du exp (iSu) %-¢<%E;> Hen(g§;> =

M= M-

a | dt exp (iSa + iFst) d(t) He (t) =

>
]
(]

N
n
olian) = a, (ot ewtios) (- gg) ot -

n=

22
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N

= exp(ia§) 2 a, (igg)" jdt exp(isgt) é(t) =
n=0
N
= exp6a§+%sz(1§)2> > a, (9", (54)
n=0

where we used [5, 22.11.8] in line 4, and repeated integration by parts in
line 5. This result is the leading N terms of (53). As a by-product of this
derivation, we have

‘gdt exp(zt) é(t) Hen(t) = exp(% 22> " (55)

COEFFICIENTS RECURSIVELY VIA CUMULANTS

We are now in a position to obtain some useful recursive relations for
the expansion coefficients {g&} in (51)-(54). The first one is obtained by
taking the fn of (51):

[}

W 1 2

) -3u-p- IS o) 9
n=0

Then using (7) and identifying the right-hand side of (56) as a new power

series, we have

o0

> k% g S o e

n=0 n=0

N —

23
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There follows immediately

(58)

It
()

]
no

But equality of the right-hand sides of (56) and (57) also requires that

<0
n o_ n
2 a W = exp i ho w}. (59)

n=0 n=0

It is shown in appendix A that a recursive solution to (59) for the {an} is

given by

Then eliminating {hﬁ} by means of (58),

n

S o X% _ E X

a, =4 (%4 B) a 17 <'£ {) a o, * ST G for n > 1,
8 m=3 (m—l) . B

a; = exp{Xy), (61)

where a = 0 for n < 0, and the sum is zero for n < 3.

Now define normalized cumulants (excluding n=0) according to

7’2“=——7é”— forn> 1. (62)
(n-1)! 8"
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Then (61) becomes

4 = % KK' _'_ 31 " (};“ £> -2 ::E Xn 2 i} o7 L

a = exp(}b) . (63)

This convolution is the desired recursion for expansion coefficients fan}

via cumulants.

As particular cases, we have

2
X 1|/ 4
=" %0 az=?\: s> +%21‘1}a0- (64A)

Parameters o and 8 (>0) are completely arbitrary in the above three equations,

and {x;} g are the available cumulants of the probability density function

under consideration.

Observe that if we choose a = X; = M and 8 —;(1/2 R (see (24)-(25)),
which is a very common choice, we have a = 0 and ap = 0; this is a
special case of the general property (33) stated earlier. This special choice
of a and 8 corresponds to choosing the mean location and rms width of Hermite
weighting (40) identical to those same parameters of the given probability

density function. There then also follows, in this special case,

A lA
% 3 25 = 5 Ks3g »

e

3 9 > =

m=3

an=ﬁ1 5(_ ag zfﬁma ] forn > 6 whena-?Cl, B-Xllz. (64B)

25
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COEFFICIENTS DIRECTLY VIA MOMENTS

Before we begin this derivation, we present the following useful

expansion [5, 22.9.17 and 22.5.19]:
exp( zye+ xy> § x) y" . (65)

We now again refer to (51) and expand the terms as follows:

Z n 1 2 W
:E% a W = exp<;-2 W —-% %> f(g> =
n=
Co o0
% %Hek(—%>wk ZO #u () , (66)
= ma

where we utilized (65) and (6). Equating coefficients of w" on both sides
of this equation, we have

n

u
E %T He, ol anskd forn >0 . (67)
.- (n—k): g"¥ -
k=0 °

We now define, for convenience, the normalized Hermite polynomials

N 1
Hen(x) S Hen(x) forn >0, (68)
and the normalized moments
u
W o= forn >0 . (69)
n . N =
n! g

(Notice the difference with the definition of the normalized cumulants (62).)

Then (67) becomes

26



TR 7377

which gives expansion coefficients {an} directly in terms of the
(normalized) moments of the given probability density function. The
recurrence in (50) can be used to generate the Hermite factors needed in
convolution (70). Parameters a« and 8 (>0) of weighting (40) are arbitrary.
AHQO(X): I, l’-\}e|(X)= X, l:{eh (x): —:—\—[X ﬂen_l (x) - ﬁen_z()()] Lor n= 2.
As particular cases, we have
Hy = aug Wo = 2auq * (a2—82) uy

an =My, A1 == Oy = : (71)
0 0 1 B 2 282

These agree with (64) which utilized cumulants. If we make the special choice

of a = Ul/uo and BZ = uz/uo = (111/110)2’ then a]_ = 0 and g = 0.

An alternative more direct derivation of (67) is possible: from (47),

(45), (B-3) in appendix B, and (3),

a =%1-cn =%1- S du p(u) Hen(“%“> =

Lfasw > (e (90"

n
i

= —&—.Hek(—fﬁ)-L forn >0 . (72)
k=0 (n-
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COEFFICIENTS RECURSIVELY VIA MOMENTS

Before we begin this derivation, we replace x » -ix, y » iy in (65) to get

1 2 < 1 Nl
exp<§y +xy> = Z < e (<ix) (iy)" = z o H ) Y, (73)
n=0 n=0

where Hin(x) is a real n-th order modified Hermite polynomial in x defined by

Hi (x) = i" He (<ix) forn >0 . (74)

The recursion for these polynomials follows immediately from (50) as

Hin(x) = X Hin_l(x) + (n-1) Hin_z(x) forn > 2, (75)

with starting values Hio(x) =1, Hil(x) = x. The difference with (50) is
the polarity of the last term; thus for example, Hiz(x) = x2 + 1,

H13(x) = x3 * 3x, versus He,(x) = x2 -1, He3(x) = x3 - 3x.

We now rewrite (51) in the following form:
0
W 1 2 Qa m
f(;):exp(ﬁw +—B- w>§ a wo. (76)
m=0

Expanding in power series by means of (6) and (73),

0

S N "
z F“n(%) il 2 FHik@w Eam S (77)
n=0 k=0 m=0
Equating coefficients of wn, there follows
u n 1
n q Qa
- = Eé% o H1k(§> a ., forn > o, (78)

or
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n n
A A fa _ N £)
woo= EE H1k(§> a =4, + E H1k(8> a_k forn>0, (79)

k=0 k=1
where we have used normalized moments (69), and defined the normalized

modified Hermite polynomials

A

Hin(x) =-%T Hin(x) for n >0 . (80)

Finally, the desired recursion for expansion coefficients {aﬁ} in terms of

the moments follows as

n
A 2 . 2
a =i - :ZE H1k(s> a forn >0 . (81)
k=1

Parameters o and g8 (>0) are arbitrary in (81) and (69).
SUMMARY

The approximations to the probability density function and cumulative
distribution function are given by (46) and (48), respectively, where « and 8
are arbitrary constants, except that g > 0. The functions ¢ and  are defined
in (41), while the Hermite polynomials {HeAB are available via (50). The
expansion coefficients iaaﬁ are given by the three alternatives (63), (70),
(81), in terms of normalized cumulants (62), normalized moments (69),
normalized Hermite polynomials (68), and normalized modified Hermite
polynomials (80) and (74). Programs for all three alternative procedures for
determining expansion coefficients {a&} are listed in an appendix. The
basis for these relations is the characteristics function expansion in

(51)-(53).
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GENERALIZED LAGUERRE EXPANSION

This section will treat weighting (2), namely,

a
u exp(-—U/B) for u >0 (a, > -1, 8 > O)- (82)

(u) =
e 8% L [(a+1)

This weighting is a special case of the three—parameter weighting

(u-y)* exp (— “—;1)

8% L P(at1)

foru >y, (83)

which is the most general scaled Tinear shift of the generalized Laguerre

weighting [5, 22.2.12]
x* exp(—x) for x >0 . (84)

We will consider only vy = 0 here. For a probability density function po(u)
which is known to be nonzero only for u > ug, we would consider the modified
probability density function p(u) = pO(u+u0), because then

p(u) # 0 only for u > 0, and the simpler weighting (82) would be directly
applicabie. This procedure is equivalent to choosing y = Ug in the
three-parameter weighting (83) above, and requires knowledge of Ug. We
presume that p(u) # 0 only for u > O henceforth in this section, and that any

necessary shifting has already taken place.

Weighting (82) has two free parameters, a and 8, and moments

_ n
v, = (a+l)n 8 forn >0 . (85)
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In particular,
w1 v = (e w o= (a2)(a*l)e” (86)

If vy and vy are specified, then the parameters must satisfy

\)2 v -v2
a=——];7—l, B=2_v-—1'- (87)
Vo = Vg 1

However, we shall keep a and 8 general and unspecified except for the

conditions in (82).

PROPERTIES OF POLYNOMIALS AND EXPANSIONS

The orthonormal polynomials associated with weighting (82) are the

generalized Laguerre polynomials [5, 22.1.2 and 22.2.12]

'/z
_ (a)(g_ n.
Qn(u)—LnB)-(m-rn' forn>0, u>0. (88)
The expansion coefficients are given by (20) as
f n! '/2
bn L Odu p{u) Qn(u) = T;;Tyﬁ> c, forn >0, (89)
where we define
od
= \y du p(u) L(s)<%> forn >0 . (90)
0

The approximate probability density function follows from (13) according to
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N
py(u) = wiu) % b, Q(u) =
_u® exp(ulg) & (a)fu
= ;E¢I]EZZ:I;— %E% a L n (B> for u >0, (91)
where we used (82), (88), (89), and defined
i v Ve
<?a:§)€>2 a, =b, = <%;2§3;€> ¢, forn>0. (92)

These three different coefficients in (89)-(92) are introduced for convenience"
in further equation manipulations. Expansion coefficient bn is the

geometric mean of auxiliary coefficients a_ and c, (with polarity).

The approximate cumulative distribution function corresponding to (91) is

w U

N a

e - t* exp(-t/8) , (a)(t

= L) = 25 e [ S () -
N
1 u
= TT;ITT EE% a, In<§) for u >0, (93)
where we define
In(y) = dex x® ™% L(g)(x) forn>0, y>0. (94)

These quantities are evaluated in appendix C; when substituted in (93), they

yield (95)

at

1 a N a
o) - T ety + 2 B UHE) s,

where lFl is the confluent hypergeometric function.

32



TR 7377

The generalized Laguerre polynomials {L(Sy} satisfy the recurrence

(5, 22.7.12]

(2

Lhed () =%Ea-1+2n-x) Lr(:)l(x) - (a=1*n) Lr(,“ (x)] forn > 2, (96)

with starting values L(S)(x) =1, L(f)(x) = otl-x [5, 22.4.7]. The highest

order term in L(:)(x) is (—x)n/n: [5, 22.1.2 and 22.3.9]; this is distinctly

different from the coefficient 1 for the Hermite polynomials. Yet the
envelope decay with n of the generalized Laguerre series for the probability
density function and cumulative distribution function are identical to those

of the Hermite series, for u > 0. To prove this, use (91) and (92) to get

R\ L o8 3 -1
o0 ) < naf@ir) e T

as n >+, foru>0, (97)

where we also used [5, 6.1.39] and [7, 8.22.1]. Again, £ denotes
proportionality with n only; the exact scale factor will be presented in a
Jater section where the errors of the approximations are estimated. So if
bn decays faster than n'3/4, the probability density function series in

(91) converges absolutely.

For the generalized Laguerre series of the cumulative distribution

function in (95), we have, for the envelope of the general term,
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Loy ey e 1 Y b

. 1 ol 1
2%
<>Cbn'r:1L (“—a) (n-1) ¢ 4~ b n3/% asn >+, foruso0. (98)

—1/4, (95) converges absolutely. And if

Thus if bn decays faster than n
the error integral (21) is finite, this property of the {b&} is true. So if
error integral (21) is finite, the generalized Laguerre series for the
cumulative distribution function converges absolutely for u > 0; this is a

sufficient, but not necessary, condition.

For zero argument, the generalized Laguerre polynomials behave

differently for large n. From [5, 22.4.7 and 6.1.39],

* (a*l) a
L(g)(O) = <nn“> = — n - F(2+1) as n > +%, (99)

2
/ as n > t*e®,  However, for

Then (97) and (98) are both replaced by b, n®
a > 0, the probability density function in (91) is zero at u = O due to the
u® term, so there is no need to perform the sum then. And the cumulative
distribution function is always zero at u = O, again eliminating the need to

evaluate the sum in (95). So the difference in behavior at u = 0 is of no

consequence.
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EXPANSION OF CHARACTERISTIC FUNCTION f

The coefficients 3, and c,, for the generalized Laguerre series were

defined in (90) and (92). Then the sum

0

D—-— E. wnfodup n =) (u/g) =
n=0 n=0 o]

fdup Z

(v] N=

(l—w)—o‘—1 i -W/B> ,

W' L u/B) = Jdu p(u) (1-w)"°"1 exp(- UW/B)_
0]

1-w /"~

T-w (100)

where f is the characteristic function, and where we used (

90), [5, 22.9.15],
and (5).

Thus {CA} are the expansion coefficients of the right-hand side of

(100) in powers of w. If we let w = £2 , we have the expansion for the
18z

characteristic function

f(z) = (1-8z2) :%%% ( )

corresponding to given probability density function p.

(101)

Weighting parameters a
and 8 are arbitrary in (100) and (101).

Collecting (91) and (101) together for comparison, and assuming that

Py > P as N » +%, we have, upon use of (92),

Q

o0
p(u) = E__éﬁﬂl_Jﬂﬁi_ :5; a LYY oy s g ,
B P(a"‘l n=0 n n (B>

= (atl), /.
F(iE) = (1-isg) ™ > @ — (;1?‘8??, : (102)
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Thus, expansion of probability density function p in an infinite generalized

Laguerre series is equivalent to an expansion of the corresponding

characteristic function in the series of the particular form in (102).

Equations (100)-(102) will serve as very convenient starting points for the

derivation of several alternative recurrences for expansion coefficients

{gﬁ}. We reiterate that « and g are arbitrary in the above, except that

a > -1, 8 > 0.

An analogous result holds for N finite, but must be derived differently

since we can no longer use infinite sum [5, 22.9.15].

transform of (91) as the N-th order approximation to the characteristic

function:
(05 = Jau explisu) py(u) =
f ® exp(-ul)
= du exp(igu) L SxRAd £ :Ei =
b 8% M(a*1) 10 S 3)

N o0
- TﬂTT%TT ;;E a i;dt exp(is€t) t et L(z)(t) .

n=0

In appendix D, it is shown that

7,
1mt a+1+n) (—im)n
S;dt P 0 LR
Substitution in (103) then yields
N (atl) N
n 13?
:EE neo(g- 13?)“+1+" :%i o

(l 16?)

Define the Fourier

0.+ +n k]

(103)

(104)

(105)

where the last relation follows by use of (92). This result is the leading N

terms of (102).
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COEFFICIENTS RECURSIVELY VIA CUMULANTS

We can now obtain some useful recursive relations for expansion
coefficients {an} and/or Ecn} in (100)-(105). We start by taking the ./
of (100):

n EZ c wn} = —(a*1l) In(1-w) + An f(w/6> (106)
n 1-w
n=0
Identify the left-hand side as a new power series, and use (7) and [5, 15.1.8]
to yield
: S10. 2 4y )
Sohow = (atl) > 2y Ly (ﬂ) _
neg " nel " k=0 k. k \1-w
K 00
£ = (-1) (k)
= {a*l) :Ei 1 wh o+ ;EE ————Ezi wk :EE SUSWLES (107)
n=1 " k=0 k! m=0 ™M
Equating coefficients of wh, there follows hg =Xg, while for n > 1,
n (-D%% (k)
h = l(a"'l) + E kx" ( E—If =
n n S0 K oe n-k)!
1 N k rm\<
- [}+1+ g -1k (7 xk] , (108)

where we used the normalized cumulants defined in (62).

But since the left-hand sides of (106) and (107) are equal, we have
oo .
> c, W' = exp i:ii ho wﬁ} , (109)
n=0 n=0

or via appendix A, the recurrence
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1
Ch=nreg ™ Ny Cpm  Forn>1, ¢, =exp(hy) . (110)
Finally, define
d o=mh, form>1 ’ (111)

for notational convenience and thereby obtain

d = atlt % (-1)k (m ffk form > 1
nt vt G k - oll®
] &
Cn = ﬁ' mgl dm Cn_m for n 2> ]., CO = exp(%) . (112)

by means of (108) and (110), respectively. Equation (112) is a recursive
relation for expansion coefficients {cﬁ} in terms of cumulants §Xhl and

auxiliary variables {dm}. The {a } are immediately available via (92).

As particular cases, we have, employing (62),
- _ X
Cq = <0.+1 B>C0 R
2
2 o 2%

sz)(m) - 2(a+2)3£BL 22 (113)
8

N

Cp =

Parameters « and 8 are completely arbitrary in all the above equations, except

that « > -1 and g8 > 0, and {X%ig are the available cumulants.

Observe that if we

let at]l = == = 1 =M
R% e
Hoaln—H
270 "1
2
Mol = H 2
and B-ﬁ__io__l.:_R—. (114)
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then ¢y = 0 and c, = 0 (here we also used (8) and (25)); this is a special
case of general property (33) stated earlier. Since the probability density
function p(u) is nonzero only for u > O, then‘li > 0 and 2% > 0, giving
allowable solutions to (114) in all cases. There then also follows, along

with dl = dy, = 0 in this special case, the explicit results

¢y = exp(&b), cq = 0, Cy = 0,

P
¢y = ——s (25 - % X)) ¢,
3
2
X
Cp=—27 (187§ - 12% XZ 7C1 - 7(llxlz.) o
4! X, ’
2
X 2 2 3
s = ET% (1482 - 120X X5 X + 0% X, X5 - % %3) g
X 2, (2 2, 11y
e (s00307, +x2) 085 - %, %005 "G
v 3000 X208 - 0 L3 XA <
2
X
¢ = 7—17(; (108007.? + 12600 X - 12600% X, X; - L470% X3 X3 +

+ 420X X%, K]+ 42004 % X{ + O XS X] - 3% L XT -

- 630% X505 + 42X LA -, 7(51> ¢q- (115)
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These relations have been confirmed by numerical comparison with (112).

These results greatly extend those of [1, (129)-(131)], where the
equivalent of our €3 is given (in terms of moments instead of cumulants, and
with Xb = 0), along with the comment that "the higher-order coefficients are
so complicated that the whole value of this type of series seems to depend on
the fact that the first term alone (co) is often a good approximation." We
find, on the other hand, that not only can we avoid the special choice in
(114) and the corresponding complicated special results in (115), but we can
handle any a,8 pair and get very high-order coefficients s simply by using
the recurrence in (112), which is easily programmed. The only thing we lose
are explicit results of the type given in (115); however, the latter are so

complicated that they are of limited utility anyway.
COEFFICIENTS DIRECTLY VIA MOMENTS

We will need the following expression [5, 22.3.9]:

: a 3 L +a —~x)K K
(e T L(n)(") = T go (:«) et )

é (E) Ti—;’}rk : (116)

]

Then (92), (90), and (3) yield, for n > O,

o0

a, = a; - c, = T%éTTF .f du p(u) L(s)(%)

0

R f“ KD k) Mk
= k%(k> = - OdU p(U) (‘U/B) = k%( 1) (k>m- (117)

[t is useful, in this generalized Laguerre series case, to define an

alternative set of normalized moments

40



TR 7377

~ L™
p =————— forn>0.

L (a+1)n g"

(118)

(Although this seems to be very different from the earlier normalization in

(69), (118) actually reduces to (69) for the a here equal to zero.) When

(118) is utilized in (117), we have the desired expression for expansion
coefficients {an}, directly in terms of (normalized) moments, in the

surprisingly simple form
n ~
a = E;% (—1)k (E) we forn>0.

Parameters « and g in (118) are arbitrary, except that « > -1, 8 > 0.

As particular cases, (117)-(119) yield

Ul 2111 UZ
= == - = = +
%Y 1M TGO %270 TTetE (o) (gr2)el

These agree with (113) which utilized cumulants. If we make the special
. 2

choices of a*l = w{/(uoug - u%) and 8 = (uoug - u%)/ (uqugls

then a; = 0 and ay = 0; this is a common approach to the approximation

problem, but totally unnecessary.

An alternative derivation of the direct moment relation (117) is

possible: from (100), (6), and [5, 15.1.8],

(119)

(120)
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n=0 k=0 1-w
e k oA k < (a*l*k)
Z 1 ( w) —a-1-k Z 1 ( w) E m
— U SR (1 ) TT H > S T w (121)

y K k ) k k B m=0 m
Equating coefficients of wh, we have, for n > 0,
. %- l_ ; (__]:)k (u+1+k)n_k _ (a+l)n % ( >__u_i§___ (122)

n <5 k! "k\ B8 (n-k)! n =, k (“+1)k Bk

which is equivalent to (117).

COEFFICIENTS RECURSIVELY VIA MOMENTS

The starting point for this case is the characteristic function expansion

in (101):
hacd = 2 (o*1*m)
-a-1-m m k k
é%% Cm (1-82) = %2% Ch (-Bz) ég% < (Bz) (123)

by use of [5, 15.1.8]. Now expand the left-hand side of (123) in powers of z,

according to (6), and equate the coefficients of z" to get, for n >0,

1 n m ((!+1"Tn)n_m A=) 0 n Cm(_l)m (a+l)n

o My = g) ¢y (8) T — 8 =8 ,% el oyt (124)
Therefore

——iﬂ————— - n. m 1 m /n

(at1), 8" = v " T = = = (U (m> o e SURERS UL
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by use of (92). Then using normalized moment definition (118), (125) can be

expressed as

ni~ n-l m /n
ap = (-1)7 | w, - %E% (-1) (m) amj} forn >0 . (126)

This is a recursive relation for expansion coefficients {aA} in terms of
(normalized) moments. The parameters « and g in (118) are arbitrary, except

that « > -1, 8 > 0.
SUMMARY

The approximations to the probability density function and cumulative
distribution function are given by (91) and (95), respectively, where « and B
are arbitrary constants, except that a > -1, 8 > 0. The generalized Laguerre
polynomials are available via (96). The expansion coefficients {an} are
given by the three alternatives (112), (119), (126), in terms of normalized
cumulants (62) and normalized moments (118); in the case of (112), the
interrelationship between expansion coefficients iaﬁ} and &n} is given in
(92). Programs for all three alternative procedures for determining the
expansion coefficients {?5} are listed in an appendix. The basis for these

relations is the characteristic function expansion in (100)-(102).
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EXAMPLES OF HERMITE EXPANSION

EXAMPLE A

The first example is one which can be handled analytically, and thereby
furnishes checks on numerical procedures and results. Consider the Gaussian

probability density function
pl) =24 (w>0) (127A)

with cumulative distribution function and characteristic function

P(u) = i(“—;l) ., fig) = exp(l"g'Y - % ;sz) . (1278)
The cumulants are

)b =0, X& = v, 7% = wz, )% =0 forno>3, (128A)
while the moments are most easily evaluated by the recurrence

My =Y Mo + (n-1) u)2 o2 for n > 2, Wy = 1, My =Y (1288)

It is obvious in this Hermite expansion case that the best choice of
weighting parameters would be a = vy, 8 = w, for then weighting w would match p
perfectly and there would follow bn =0 for n > 1. We consider a mismatched
choice of a and g to illustrate rapid decay of the expansion coefficients and

some conditions on convergence.

Expansion coefficient ¢ follows from (45) and (127A) according to
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c, = fdu p(u) Hen(i;—oi) = B‘de p(atsx) Hen(x) =

n
2 2

= 8 j\dx_]: ¢((1_—Y+_BX.) He (x) =<BE> He —a >’ (]_29)

w w n B n 2 2

8 —w

the last step via use of [5, 22.5.18] and [8, 7.374 10]. Then from (47),
n
_\/2 ~

b, = (n?) <———-——‘BB“’> He, (130)

This equation is correct for all positive values of g and w. However, for

B < w, a more convenient form can be obtained by use of (74), if desired:

n
-1 1/2 2
b = (n!) ¢ <&> Hin(—Y—‘i—>, (131)

n B

where Hl'n is the modified Hermite polynomial. For 8 = w, a limit of (130)

yields b = (nl)—llz((Y-G)/B)n-

If 8 > w, we can use the result in (50A) on (130) and obtain

n
2 2 -4
b_aC <@> n as n > +%, (132)

Since the quantity in parentheses is always less than 1 in this case of 8 > w,

we have bn » 0 as n » teo,

For 8 < w, we use [7, theorem 8.22.7] and find now that

w2—62 —|/+
b, oC exp(V2m A) T n as n >+, (133)
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where A is the absolute value of the argument of Hen in (130). This

quantity (133) tends to zero with n, regardless of A, when g > w2

Combining with the result above, we can conclude that

b, >0 asn >+ for =< g < *+2, (134)

1A

Furthermore, bn behaves as an n-th power, which is faster than n-1/4,

thereby guaranteeing convergence of the probability density function and
cumulative distribution function series, according to the discussion in (50A)
et seq. On the other hand, {bn} diverges when 0 < 8 < w/{Z, as may be seen
from (133).

The error integral in (21) is, for Hermite weighting (40) and probability

density function (127),

2 2 2
jd“ p(u) ___8 exp<_(7_1)__> if <2 g (135)
2 s
wiu) NoaZo? e - V2

by use of [8, 3.323 2]; this integral is divergent if g8 < w/Y2. Thus, for
this particular example, the error integral and expansion coefficient
sequence ﬂbﬁ} converge or diverge together, depending on the condition

B8 2 w/Y2. The choice of a is irrelevant in this case.

A numerical example of sequence {bﬁ} for

y=11, w=2.23 a=1.14, g = 2.34 (136)
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is plotted in figure 1 on a logarithmic ordinate. Values of bn less than
1E-7 in absolute value are all plotted at the £1E-7 line. The critical ratio
2—mz/s in (130) is .184 for this example, leading to rapid decay of
expansion coefficients {b6§. The three sets of expansion coefficients in

figure 1 are labelled according to the shorthand notation

RC: Recursively via Cumulants,
DM: Directly via Moments,

RM: Recursively via Moments. (137)

It is seen that the expansion coefficients determined recursively via
cumulants, namely, the RC plot, decay rapidly and never encounter round-off
error, whereas the DM and RM procedures both are subject to large round-off
error for n > 70, as indicated by the large increasing oscillations. This
example can be rather misleading, however, since all the cumulants (128A) of
Gaussian probability density function (127A) are zero, except for
)& = v, ?% = wz; this leads to a very special form of the RC procedure

unique to the Gaussian case.

In figure 2, the cumulative distribution function and exceedance
distribution function, 1-P(u), as determined by Hermite expansion (48) using
N = 5 terms, are plotted. The exact result, (127B), overlapped these curves
over the full range plotted. The three procedures, RC, DM, and RM, all
yielded identical distributions in figure 2, as inspection of figure 1
confirms, since the three sets of expansion coefficients are virtually the
same for n < 50. Even though the three sets of expansion coefficients differ

significantly for n > 60, the corresponding approximate probability density
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functions and cumuiative distribution functions for N = 70, say, would not be
very different, because the relative differences in p and P are very small,
somewhere in the 1lE-5 range; see figure 1 for n = 70, and recall that bO =1

for this example.
EXAMPLE B

The probability density function of interest here is the one previously

considered in (34) et seq.:

Y =
p(u) = 2 u+leFP u>/w for u >0 (y > -1, w >0) . (138)
w

This class of probability density functions includes, for y = 0, 1, 2,
respectively, the one-sided Gaussian, Rayleigh, and Maxwell as special cases.
The characteristic function and cumulants are not easily determined directly
for this function. However, the moments, as given already in (35), are

readily evaluated via the simplie recursion

2 )
Wy = Mo T (y=1tn) for n > 2, ug = 118 Rl Ry (139)
iz
An example of the expansion coefficients for
Y=3’u)=1 (1=0,B=-7 (140)

is depicted in figure 3. The values of b, for n =0, 1, 2, 3 are 1, 1.90,
2.18, 1.63, respectively, and lie above the top of the plotted region. The
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coefficients obtained directly via moments, DM, decay to approximately 1E-4
near‘n = 70 and then encounter round-off error; The expansion coefficients
corresponding to RC and RM are more noisy. The procedure used for RC was to

determine the moments via (139), transform directly to cumulants according to

(A-7), and then use (63).

A plot of the distributions using N = 65 terms is given in figure 4; the
results are the same for all three sets of expansion coefficients, as may be
seen by reference to figure 3. Furthermore, the exact cumulative distribution
function, P(u) = 1 - (1+u2) exp(—uz) for u > 0, overlays these results
except for the bow in the exceedance distribution function below 1lE-11 near
u = 5.5. Values of the cumulative distribution function for u < 0 as
determined by series (48) are not zero, although they should be for this
example; the generalized Laguerre series would fit this example better, since

it is nonzero only for positive arguments.
EXAMPLE C

Consider the class of Bessel-function probability density functions
Y 2,2
p(u) =NAuY exp(~u“/w®) If(eu) for u >0, (141)

which includes the Rice and generalized QM distributions, for example. The
n-th moment is [8, 6.631 1]

$ (EH\ n+2h

SI(z) o F (%* nis+l; 4 w292> forn >0, (142)

Mo =TSR nE+1) L
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with h = (y*3+1)/2; in order for Ky to be finite, we must have h > 0. The
1F1 function in (142) can be evaluated via recursion; this leads to a

recursion for the moments (see appendix E).

We consider here only the special case of the Rice probability density
function, namely,

2
A=-—5exp (
w

(143)

=
€
~
P
N
"
<
1}
—
—%
]
o
~

for which

2u u2 m262
p(u) = = expl- 5 - —3 Io(eu) foru>0. (144)
w

w

The moments in (142) then reduce to

p(7+1> 1F1<— -4 m262> , (145)

and can be easily determined by the recurrence presented in (E-5). The

cumulative distribution function corresponding to (144) is the Q function [1]

P(u) =1 —Qéﬁg ,ﬁZ%Q> for u >0 ; (146)

the characteristic function is given in [9, appendix A] as an infinite series,
meaning that the cumulants cannot be determined directiy, except via the

moments.

The particular example we consider here for the Hermite expansion is a
sum of 8 independent random variables, each with Rice probability density
function (144). For direct comparison with the exact results in [9], we also

consider the normalized form of (144), namely wl = 2. Furthermore, we limit
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numerical consideration in this particular example to evaluation of the
cumulative and exceedance distribﬁtion functions for e = 0, which corresponds
physically to the false alarm probability for the sum of eight normalized
envelopes of narrowband Gaussian noise (i.e., a Rayleigh probability density

function for the individual random variables).

For « = 4, 8 = 2.15, the expansion coefficients {b&} are displayed in
figure 5 for the RC, DM, and RM approaches. All the {b} for 1 < n < 20 are
bigger than 1; the biggest is b6 = 12.25. The {bn}, for both moment
approaches, have not been plotted for n > 60 because they continue to
oscillate well beyond the *1 Timits, while the RC coefficients decay
exponentially with n. Despite the fact that the moments were the initially
determined quantities for this example, the RC method far outperforms the DM
and RM methods, as seen in figure 5. The reason for this is as follows: for
the RC method, the procedure was to obtain moments via (145), cumulants via
(A-7), cumulants of the sum of 8 independent random variables by simple
scaling by a factor of 8, and then expansion coefficients via (63). For the
DM and RM methods, the moments of the sum of 8 random variables were
determined via [6, (14)] which progressively determined the moments of a sum
of 2 random variables, then 3, 4,..., 8 in order, and then employed (70).
This iterated procedure for moments requires more number-crunching and leads
to considerably larger round—off error than the simple scaling required for
the RC procedure. Thus it appears that when the random variable of interest
is obtained as a sum of several independent random variables, the RC approach
will be the prime candidate for expansion coefficient evaluation; this applies
also if the individual random variables have different statistics, but remain

independent.
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The cumulative and exceedance distribution functions for this sum of 8
normalized Rayleigh variates are plotted in figure 6, for the N = 140
expansion coefficients of the RC procedure in figure 5. In order to make a
precise determination of the accuracy of this Hermite series approach, the
false alarm probabilities were computed at the eight thresholds listed under
M =8 in [9, table 1]. To the precision given in that table, the computed
probabilities were exactly the specified values 1E-m for m = 1(1)8. Thus, as
anticipated by figure 5, very accurate evaluation of false alarm probabilities

are possible by this series approach.

A short search of values of the best weighting parameters a and 8, to use
with the DM approach, led to « = 5.84, 8 = 2.28 and expansion coefficients
bn near 1lE-4 at n = 28, before round-off error became dominant. This is
better than the result of DM in figure 5 for a = 4, 8 = 2.15. tEtvaluation of
the false alarm probabilities at the thresholds in [9, table 1] gave 7 decimal

accuracy at .1, and 4 decimal accuracy at 1lE-8. This is adequate for most

purposes, but is not as good as the RC approach.

EXAMPLE D

In [4, appendix C], the characteristic function for shot noise with
random amplitude and duration modulation, and arbitrary individual pulse
shape, is derived. (This result is then specialized to elliptical pulses and
Rayleigh amplitude modulation [4, (C-36)-(C-42)].) Also, the cumulants are
extracted, with general result [4, (24)], where v is the average number of
pulses/second, Z is the average length of the duration modulation, u

aln) is
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the n-th moment of the amplitude modulation, and F(x) is the individual pulse
shape of the shot noise. Thus shot noise is a case where the cumulants are

directly capable of evaluation, whereas the moments must be found indirectly.

For the special case of elliptical pulses and Rayleigh amplitude

modulation, there follows for the cumulants [4, (29)]:
3
sntl
N 2
'Xn = v} 02 2 P3(%+1>/F(n+2) for n > 1, XO =0 . (147)
These quantities are easily evaluated via recurrence
%
2 2 i 8 7 2
Xn = xn—Z o N /(n*1)  for n > 3, 7(1 = (v}) vAdog, Xz =3 v,Qoa . (148)

This procedure was used in [4, appendix D] to obtain the probability density

function and cumulative distribution function results given there.

There is a nuance that arises in shot noise for pulse shapes of finite
duration; see [4, pp. 40-42]. Namely, there is an impulse in the probability
density function, at u = 0, of area

| Py = expl-vZ (x, - x)1 (149)

where (xl,xz) is the non-zero extent of an unmodulated individual pulse.

Since an impulse is very difficult to approximate by a finite series of
continuous functions, the effect of this quantity should be subtracted from
the statistics (moments or cumulants), and the continuous portion of the

probability density function should be approximated. Similarly, the
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corresponding step in the cumulative distribution function at the origin

should be eliminated from the approximation procedure.

This feature is easily incorporated if P0 is subtracted from the
zero-th order moment [4, p. 42]. The only undesireable side-effect of this
manipulation is that the initially computed cumulants must be transformed to
moments, then Mg corrected, and then all the new cumulants evaluated. This
double transformation is necessary because the correction (subtraction)
procedure can only be accomplished in the moment domain. Of course, when the
DM or RM procedures are employed instead of RC, the last transformation to

cumulants is unnecessary; this was, in fact, the procedure used in [4, p. 60].

When the individual pulse F(x) has infinite duration, as for an
exponential or Gaussian waveform, then Xo = X1 is infinite and PO in
(149) is zero. In that case, the considerations in the last two paragraphs
can be disregarded, and the cumulants generated via (148) used as is. It is
then very likely that even better accuracy in the expansion coefficients will

be achieved than for this current example.

For overlap factor [4, p. 43]

Ky = vﬂ(x2 = xl) = 6.2, Py-= exp(-6.2) = .00203, o =1, (150)

and for weighting parameters a = 6.1, 8 = 4.3, the expansion coefficients

%6} are displayed in figure 7 for the three recursive procedures. The RM

results are considerably poorer than the RC and DM coefficients, which are
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comparable for n < 65. However, even here, the coefficients have only decayed

to the 1lE-3 level, which may not be sufficiently small for accurate results.

The distributions using N = 65 terms and the RC expansion coefficients
are given in figure 8. Although the actual cumulative distribution function
is zero for u < 0, the approximation oscillated around zero, reaching a
positive peak of value .22tE-3 at u = -2. Similarly, significant wiggles
develop in the exceedance distribution function below the 1lE-4 Tevel. The
reason for the inadequacy of these Hermite expansions near u =0 is the abrupt
zero behavior of the true probability density function for negative arguments,
a feature inherently difficult to approximate by means of smooth continuous
functions. The error of the approximations in figure 8 is estimated in a
later section and superposed on the plot, for ease of ascertaining the
reliability of the curves. The corresponding approximations for the
generalized Laguerre series are better for this type of probability density

function, as will be demonstrated in the next section.

The approximate probability density function for this example, again with
N = 65 terms, is given in figure 9 on a linear ordinate. It reaches a
negative peak of -8tE-4, and crosses the u = 0 axis with value .004; both of
these values should be zero, and will be for the generalized Laguerre series.
To see how the approximate probability density function behaves for larger
arguments, the logarithmic plot in figure 10 is used. Wiggles develop near
the 1E-4 level and become large enough that negative values of the density are
yielded near u = 28 and 31. It will be worthwhile to compare this Hermite
series with the generalized Laguerre series to be presented in the next
section. The estimated error associated with figure 10 is developed in a
later section.
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EXAMPLES OF GENERALIZED LAGUERRE EXPANSION

EXAMPLE E

As with the earlier Hermite expansions, the first generalized Laguerre
example here is one that can be evaluated analytically, for purposes of
checking numerical procedures and results. Namely consider the Chi-square
probability density function of 2(y*t1l) degrees of freedom (which need not be
integer):

o(u) = 4 exp(-u/o) (v > =1, @ >0) - (151)

oV L P(y+1)

A1l probability density functions and approximations are limited to u > O in
this section, since they are zero for u < 0; this restriction will be presumed

in the remainder of the presentation.

The exceedance distribution function is related to the incomplete Gamma

function [5, 6.5.3]:
o6
1= P(u) = [ dt p(t) = [(s*1, ulw)/ Tly*L) - (152)
7}
The characteristic function follows from (151) as

f(i%) = (1 - Tt (153)

with cumulants
K o= (k-1)! (1) W fork 1, X =0, | (154)
and moments

(v*1), o for k >0 . (155)

Yk
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Thus either set of statistics can be used as a starting position. The error
integral in (21) is finite if

Slcac 2yt 1l and B >wl2. (156)

We will find the expansion coefficients by means of the characteristic

function expansion (100), developed earlier for the generalized Laguerre

series. Specifically, we utilize the power series expansion

2 (a- 2 (y+l
- > = g (Y::)k (B%"Y W (157)

m=0 m.

where we used (153) and [5, 15.1.8] twice. The coefficient of a general term

w" is then immediately given by the closed form

n (e-v), (F1) n-m
_ B-w
C, = mE% P T 5 ) forn >0 . (158)

Alternative expressions for the expansion coefficients are

(y*1) _A\N
c_ = A <—B—‘9—> F(a-y,—n;—n—y;—i->=

n n. B B—w
+1
- u ("_“’. L F(—n N=a:—=N=-vy: §.> -
= n' 8 5 s A ) o/
(at1),
St F GH,Y+1;a+1;%> forn >0, (159)

obtained by means of [5, 15.1.1, 15.3.5, 15.3.7] respectively. In fact, the

Jast result can be obtained directly by using [8, 7.414 7] on (90) and (151):
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e u¥ exp(-ufw) | (a) fu
“n = gdu oVt [4+1) “n (B> ' ‘ e

However, the latter two results in (159) are not numerically stable, whereas
(158) and the first line of (159) are stable for large n, without encountering

round-off error.

Some special cases of (158) are as follows:

(v+1) n
if o= = — N (8w} .
if « = vy, then cn Sy (B ) 5
(a=v)
if 8 = w, then Ch =™t 5
if «a = y and 8 = w, then Ch =80 (161)

The last case is to be expected, since the weighting exactly matches. the

probability density function (151) then.

A numerical example of sequence {bn} for
vy = 1.1, w= 2.3 a = 1.105, g = 2.1 (162)

is shown in figure 11, using the three recursive procedures developed earlier
for the generalized Laguerre series in (112), (119), (126). In addition,
exact result (158) is plotted for comparison. The expansion coefficients have
a rapidly decaying transient for n < 10, and then a decay approximately

proportional to n"3/2 for large n. The abrupt change of character at n = 5

does not signify the onset of round-off error; rather, the latter is indicated
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by an erratic behavior, typically increasing exponentially with n (linear

growth on a logarithmic ordinate).

A different plotting strategy will be adopted henceforth for the
expansion coefficients {bn}, in order not to clutter the diagrams with large
oscillations as in figures 1, 3, 5, 7. Specifically, when the expansion
coefficient b first exceeds the *1 limits, the remainder of sequence {b}
will not be plotted, since this is a region of large round-off error. Thus,
although the RM curve in figure 11 returns to the #*1 limits briefly at

n = 52,53, these values are not displayed.

Round-off error for the RC procedure does not become as significant as
for the two moment approaches until n has increased by almost 10, for this
example in figure 11. In fact, the expansion coefficients for the RC
procedure overlap the exact values until n = 40. The corresponding
approximate distributions, using N = 40 terms in expansion (95) as determined
by RC, are plotted in figure 12. The exact result (152) overlays these

results over the entire range plotted.
EXAMPLE F

The following probability density function corresponds to a noncentral

Chi-square variate of 2v degrees of freedom:

2, v-1
pu) =—§—exp<— . 2“){"—?) Ldm  (v>0 5 (163)
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d is the noncentrality parameter, and 2v need not be integer. The

characteristic function is [8, 6.631 4]
: . -V 1d2§ ‘
flif) = (1-128) 7" exp{1557 ) » (164)

and is the same as the one considered in [10, (50) et seq.]. The exceedance

distribution function is the generalized Q-function:
0
1 - P(u) = S

2 v=-1
udt % exp <—d—-2+—tl> <\f_§‘> -1 (dyT) =

w 2,2 v-1
= ({dx X exp(—g—%x—> (é—) Iv_l(dx) = Qv(d,V'J') . (165)

By expanding the fn of (164) in a power series in i§, the cumulants

follow as
;Kh = 2"(n-1)! <; +-% d2 €> for n > 1, }% =0 . (166)

And the moments are obtained from (163) as

wo=2" (v) F (—n;v;—d2/2) =

n nl

=2"n L(“gl) (—d212) forn >0, (167)

by use of [8, 6.631 1] and [5, 13.6.9]. Both (166) and (167) lend themselves
to simple recurrences which invoive only positive quantities; thus the

starting statistics can be quickly and accurately evaluated.

The numerical example we consider here will be compared with the exact

results in [10, figure 11], namely,

56



TR 7377

v= 2.7, d =3 a=1.7, B =05.5. (168)

1 as u » 0+,

Since the probability density function in (163) behavés as u“~
it is reasonable to choose weighting parameter a in (82) as v-1, as indicated
in (168). And since (163) behaves as exp(-u/2) as u » +®, we must choose
g8 > 1 in order that the error integral in (21) is finite. The particular

values in (168) approximately minimize the sum of {bﬁ}g in (21).

The expansion coefficients {bﬁ} as determined by the three available
recursive procedures are displayed in figure 13. The RC coefficients decrease
to values less than 1lE-10 near n = 50, before round-off error becomes
significant. The two moment approaches deteriorate near n = 30, which is
markedly poorer than the cumulant approach. The distributions, as determined
by N = 50 terms of the RC approach, are given in figure 14, and agree with the
d = 3 curve of [10, figure 11]. When the approximate probability density
function for N = 50 was compared with exact result (163), 10 decimals of
agreement were obtained; this is due to the ability to get very small fbn}

in figure 13 via the RC method.
EXAMPLE G
This example is the Rice probability density function given in (144),

with moments (145) and cumulative distribution function (146). The starting

statistics are the moments as determined by recurrence (E-5)-(E-6).
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The particular numerical case of interest is
e = 3, wl = 2 a =1, 8 = 1. (169)

The values of « and g8 were found by the usual trial and error search procedure
of observing plots of expansion coefficients {bn}, looking for rapid decay
and small round-off error; results for this example are displayed in figure
15. The RM procedure deteriorates rapidly at n = 30, whereas DM and RC are

useable up to n = 55 and 65 approximately.

The cumulative and exceedancé distribution functions for N = 65 terms of
the RC procedure are plotted in figure 16, along with exact result (146). The
approximate exceedance distribution function overiaps the exact one until
slightly below the probability level 1lE-4, which corresponds to the level of
reliability of b, in figure 15 at n = 65. Then the exceedance distribution
function makes a positive (upward) turn below 1lE-6, which is impossible for a
physical density function which must remain positive; thus the approximation

deteriorates rapidly for u > 7.

EXAMPLE H

This is a follow-on to the previous example, in that we consider a sum of
8 Rice variates, each with the statistics in (169). The expansion

coefficients for

o = 3, wl = 2 a = 26, g =1 (170)
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are displayed in figure 17. Whereas both DM and RM are useless beyond n = 25,
the expansion coefficients determined by RC decay down to the 1E-10 Tevel at
n = 150 before round-off error becomes significant. The corresponding
distributions in figure 18, using N = 143 terms of the expansion via RC,
reveal accurate results down to the 1E-12 level of probability, except for a

slight flare in the exceedance distribution function below 1lE-11.

We also checked the example of the sum of 8 normalized Rayleigh variates
considered earlier via a Hermite series in example C. For a =-10, 8 = .9, the
expansion coefficients {bn} decayed to the 1E-11 level at n = 100 for the RC
approach and agreed with the false alarm probabilities calculated exactly in
[9, table 1] for M = 8. By contrast, the DM expansion coefficients were
subject to significant round-off error by the time n reached 30, and were

useless for small probability calculations.
EXAMPLE 1

We return to the shot noise process previously considered via a Hermite
series in example D. The equations and discussions there should be reviewed,
since they are directly relevant to the generalized Laguerre expansion here.
For the choice of parameters in (150), the selection of generalized Laguerre
weighting parameters

a = .74, g = 2.1 (171)

leads to the expansion coefficients plotted in figure 19. The DM and RC

results agree to n = 32, and then begin to diverge from each other. By way of
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contrast with the Hermite expansion coefficients in figure 7, where values in
the 1lE-3 range were achieved, values in the 1lE-6 range can be obtained here
for the generalized Laguerre expansion, for n in the mid-30s. The DM result

was previously given in [4, figure D-1].

The distributions for N = 32 terms of the RC procedure are plotted in
figure 20. This result is considerably better than the Hermite expansion in
figure 8; instead of the wiggles which developed at 1E-4 in figure 8, the
curve in figure 20 is smooth down to the 1lE-8 probability level, and then
develops a bump. Also, the cumulative distribution function is accurate at
u = 0, where it takes on the value P0 = .002 given in (150), and is zero for
u < 0. This cumulative distribution function was previously given in

[4, figure 8].

The probability density function for N = 32 terms of the RC procedure is
given in figure 21; this result was previously given in [4, figure 9]. It is
significantly better near the origin than the Hermite approximation given
earlier in figure 9, which developed negative values for u < 0. In order to
see what the probability density function does for larger u values, the same
probability density function is plotted on a logarithmic ordinate in figure
22. It is accurate to the 1lE-9 level but then develops a hook that is
incorrect; however, this approximation remains positive even at this very low
value of the density, whereas the corresponding result via a Hermite expansion
in figure 10 developed negative values. The estimated errors in figures 20

and 22 are evaluated in a later section.
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EXAMPLE J

This last example is for probability density function
[}
p(u) =—21—exp(—u/1> foru>0, (172)

for which the moments are

uy = (2n*1)! . (173)

The characteristic function and cumulants are not available in any convenient

analytic form.

This is a particularly difficult example, since the characteristic
function expansion in (6) has a zero radius of convergence; thus the moments
do not uniquely determine the probability density function or cumulative
distribution function. Also, the error integral in (21) is always infinite;
in fact, regardless of the choice of weighting parameters o« and 8 used in the
generalized Laguerre series, the expansion coefficients {bn} always
diverged. Nevertheless, a search of parameter values led to a pair of

selections, namely,

a = -.35, B = 30, (174)

for which the expansion coefficients had an initial decay to the 1lE-2 level
before divergence took over; see figure 23. In fact, the identical same
results were obtained for all three methods, RC, DM, RM; this is probably due
to the fact that divergence of {bﬁ} dominated before round-off e}ror became

significant.
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The distributions are plotted in figure 24 for N = 15 terms of the
generalized Laguerre series. Comparison with the exact exceedance

distribution function

1/2)

AR - (175)

1-Pu) =(1+uy exp (

reveals that the approximation is decent down to the .0l probability level,
but then oscillates more and more violently as u increases. Thus even in this
non-unique example, a limited-quality approximation is achieved by the
generalized Laguerre series; this example confirms the comment in [3, p. 167]
that, even for a divergent series, a limited number of expansion coefficients

often gives a satisfactory approximation.

The exact and approximate probability density functions are plotted on a
11neaf ordinate in figure 25, and on a logarithmic ordinate in figure 26,
using N = 15 terms of the generalized Laguerre series, when the expansion
coefficients were determined by the DM method. The approximate probability
density function is negative for 150 < u < 190, around the 1E-6 level. The

estimated errors of the approximations in figures 24 and 26 will be developed

in the next section.
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ESTIMATED ERRORS OF APPROXIMATIONS

When the ca]cuiations of the approximate cumulative or exceedance
distribution functions or the corresponding probability density function are
made, it would be very useful to have a rough estimate of their reliability.
One way, as discussed in the previous sections, is to look for nonsmooth or
anomalous behavior on the tails of the functions. Here, we will develop a
more quantitative estimate of the error and superpose it on some of the

previous examples, for confirmation.

Both the Hermite and generalized Laguerre orthonormal polynomials
oscillate with n and decay slowly. The same general behavior is true of
expansion coefficients {bﬁ}’ This leads to summations for the various
functions with terms that also oscj]late and decay. A rough estimate of the
error is afforded by the envelope of these oscillations, evaluated at the
first neglected term of the summation. This procedure will be pursued for
both types of expansions; how useful it is will be indicated by numerical

examples.
HERMITE EXPANSION

The following result for the envelope of the Hermite polynomial is

obtained from [5, 6.1.39 and 22.5.18] and [7, 8.22.8]:
- Va
2 2
Env {(n') Hen(x)} ~ exp(x~/4) (ﬁ> as n » +%, (176)
Also, from (46) and (47), the n-th term of the approximate probability density

function is
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E}— ¢ (%) by (":>—‘/2 He,, (u_;_a> . (177)

Then the magnitude of the error of the probability density function

approximation, if the n-th term is the first one neglected, is roughly

-a i -
En (usp) = -—;— ) (%—) Env{br& Env {(nl) Hen(uT>} =
- 2\ -4
_ [21/4 TI'BA s] exp (-(u—;"%—> n Envfbn] as n » te, (178)
8

Here we used (176).

As for the cumulative distribution function, we have from (47)-(49), the
n-th term of the approximation as

-4 (”%’) b, () & He, 1 l‘g—“) . (179)

The magnitude of the error for the cumulative and exceedance distribution

functions, if the n-th term is the first one neglected, is then defined as
E (u;P) = ¢ (_U_—_g_ Env ib} Env (n')-l/z He ==y
nt> T 8 n - n-11 8 -

\ - 2\ -
~ (:ZATr%] exp(—(z—;éﬁ>n iy Env ibn} as n > +oo, (180)

Again, (176) was of crucial importance in getting this result.
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Since the above estimates are asymptotic in n, they will be most reliable
for n large; their use for small n could be very misleading. The way to use
these error estimates for the density and distribution approximations is as
follows. First, a search on a and 8, to find the fastest decaying expansion
coefficients {bﬁ}, is conducted. The weighting parameter values, o and B,
and the corresponding envelope value of the expansion coefficients ibn} at
the point, n, where round-off error becomes dominant, are then noted. (For
example, for figure 7, we observe that Envﬁ%& % 2E-3 at n = 65, when
a=6.1, 8 =4.3; see example D.) Then (178) and (180) can be computed and

plotted in the ranges of u of interest.

An example of this procedure for the shot noise process in example D is
given in figures 27 and 28. In particular, the approximate results are
repeated from figures 8 and 10, and error measures (180) and (178),
respectively, are superposed as dashed lines, each on the apprépriate figure.
Just where the approximations develop large wiggles, the errors are of

comparable magnitude, indicating unreliable estimates there.

It should be observed from these figures (or from (178) and (180)) that
the absolute error is maximum at u = a, but that the relative error is a
minimum in that neighborhood. Also, although the absolute error decays with
u, the correct answer decays faster, leading to an increasing relative error,
which eventually becomes so excessive in the tails of the various functions

that the approximations are useless.
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GENERALIZED LAGUERRE EXPANSION

The details for the generalized Lagderre'series are very similar to those
above and so will be abbreviated. The envelope of the generalized Laguerre

polynomial is [7, 8.22.1]

~le

i
|-
~le

i
= )

- 1 x
Env {L(:)(xi} ~x 2 o2 n as n»>»*®, forx>0. (181)

From (91) and (92), the n-th term of the approximate probability density.

function is
Y2 ’
u® exp(-u/g) b n! L(a) u

Then the magnitude of the error of the probability density function

approximation is, for u > 0,

oy U exp(-u/s) = Y (a) -
E (usp) = :“"L?X[S(:l; Env {b } E”V{@%ﬁ) Lo (%)}_

_|/+
exp(— %> n Env {bn.‘}as n > +00, (183)

i

where we used [5, 6.1.47] and (181). This quantity peaks at u = g(a-3).

With regards to the cumulative distribution function, the n-th term of

the approximation is, from (95) and (92),
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il 2
u:mer):?(-u/e th o QTI)‘) (4 (184)

Then the magnitude of the distribution error, for both the cumulative and the

exceedance distribution functions, is roughly

atl +
£ (usP)= :a+1 exp(-u/g) Env ZbA} Env{i (;—:TT:) a l) -} =

1
~(%P(a+li 2 (9> exp <-§g> n Env {bn} as n>+®, foru >0, (185)

upon use of (181). This quantity reaches its peak at u = 8(a*3).

An application of these results to the shot noise process, which was
re-investigated in example I via the generalized Laguerre series, is given in
figures 29 and 30. Specifically, the approximate results from figures 20 and
22 have been repeated, and error measures (185) and (183), respective]y;
superposed as dashed lines. They confirm the earlier observations that the
distribution and density approximations are reliable until the anomalous

behavior on the tails manifests itseilf.

The difficult example J is considered in figures 31 and 32. Since the
expansion coefficient sequence {b&} in figure 23 diverged for large n, the
selection of n = 15, as used in figures 24-26, is not the large value needed
to justify the use of (183) and (185). Thus, the dashed curves on figures 31
and 32 must be considered only as ball-park estimates; in general, the

approximate error appears to be too conservative in these two figures.
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Finally, the Rice variate of example G is re-considered in figure 33. We
took Env{bgﬁz 3t-4 at n = 65, by extrapolating in figure 15 from smaller n,
since round-off error is becoming significant by this value. It verifies the

unreliability of the approximation in figure 33 for u > 7.

Although all the examples in this report have the capability of
evaluating either the moments or the cumulants via recursion, this is by no
means necessary. Any method whatsoever of accurately calculating the starting
statistics, be they moments or cumulants, is acceptable. For example, if a
random variable with known probability density function g is passed through a

complicated nonlinearity g, the moments of the output are given by

e fdu "(u) qlu) . (186)

n

These quantities could be evaluated for 0 < n < N by brute-force numerical
procedures if necessary. The limit value N will depend on the accuracy with
which g and q can be evaluated; if g(u) > 0 for all u, these integrals can be

accomplished to a high degree of accuracy, thereby allowing large values of N

to be employed.
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DISCUSSION

Several alternative methods have been presented for obtaining either
Hermite or generalized Laguerre series expansions of probability density
functions or cumulative and exceedance distribution functions, by means of
recursive relations involving either moments or cumuiants. Furthermore,
estimates of the errors of the approximations are furnished so that the
reliability can be assessed. Comparisons between approximations obtained by
either the Hermite or the generalized Laguerre series afford an assessment of
the accuracy of each; also, the availability of three alternative recursive
procedures for the expansion coefficients allows for selection of the best

method and results, and determination of the amount of round-off error.

The key feature to this approach is the rapid calculation and observation
of the orthonormal expansion coefficients {bA} for each particular guess of
weighting parameters o« and g. A trial and error procedure is suggested for
determining o« and 8 values that yield the set of fastest-decaying expansion
coefficients. From observation of‘the expansion coefficients, the number of
terms to retain in the series expansions is ascertained, being sure to avoid
the effects of round-off error which dominates the calculated expansion
coefficients {bA} for large n. Since the amount and location of round-off
error on the plot of expansion coefficients also depends on « and 8, a
judicious search may be required to find acceptable weighting parameter
values. Of course, a computer with a larger number of significant digits
would greatly alleviate this drawback; the particular computer used for all

the calculations reported here is the Hewlett-Packard 9000 Model 520 which
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devotes 52 bits (15.65 decimal digits) to the mantissa and 11 bits to the
exponent. Failure of the technigue is indicated by divergence of the

expansion coefficient sequence jb 3.

Programs for the shot noise process considered in_examples D and I are
presented in appendix F. Times of execution are as follows. For the Hermite
series, the 80 cumulants or 80 moments required as input for figure 7 took .7
or .35 seconds, respectively. The calculation, plotting, and display of the
80 expansion coefficients in figure 7 took 1.6 seconds via the RC approach and
1.75 seconds via the two moment approaches. The computation and display of
the 100-point plots of the cumulative distribution function in figure 8 and
the probability density function in figure 9, each using 65 terms in the

series expansion, took 1.1 and .95 seconds, respectively.

For the generalized Laguerre series, the 70 cumulants or 70 momeﬁts
required as input for figure 19 took .54 seconds or .28 seconds,
respectively. The calculation and display of the 70 expansion coefficients in
figure 19 took 1.8 seconds via thé RC approach and 1.5 seconds via the two
moment approaches. The computation and display of the 100-point plots of the
cumulative distribution function in figure 20 and the probability density
function in figure 21 took 1.1 and .7 seconds, respectively. These execution
times are short enough to allow a human observer to conduct a rapid
trial-and-error search of a,8 space, determine adequate parameter values, and

assess their accuracy.

Alternative exact procedures for determination of cumulative and
exceedance distribution functions via characteristic functions have been
presented in [9, 10, 11]. Those methods generally have the potential for
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greater accuracy, are less subject to round-off-error, and would be preferred
if possible. However, analysis of systems with nonlinearities and memory
sometimes preciudes or greatly hinders their application; in such cases, the

current approach is a very good candidate for consideration.

The two weightings in (1) and (2), namely the Hermite and generalized
Laguerre, have been investigated rather intensively here, because so many
properties and recursions are available for the corresponding (orthonormal)
polynomials. These properties have been utilized to derive simple recursive
relations for the expansion coefficients and density and distribution
functions, thereby realizing quick efficient procedures for numerical

evaluation and observation.

It would be extremely useful to be able to extend these results to the
weighting

a

u exp(—u2/82) for u > 0, (187)

since this class of probability density functions is often encountered in
nonlinear systems with Gaussian inbuts. However, there are several pivotal
recursive relations for the corresponding orthonormal polynomials that would
be needed, and it is questionable if a fast procedure could be devised without
them. Also, it is unknown if recursive procedures for the expansion
coefficients in terms of moments or cumulants could be derived, as was done

here for the Hermite and generalized Laguerre weightings. This is a topic

worthy of further investigation.
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APPENDIX A. COEFFICIENT RECURSION FOR EXPONENTIAL OF POWER SERIES

>4}
Suppose power series :E{ hy, 2" converges for some ]z] > 0, and we
n=0

exponentiate it, getting a new power series
oD oQ
> g, 2" = exp {Z h Z"} : (A-1)
n=0 n=0
Then the lowest order coefficient is
gg = exp(hy) , (A-2)

while for k > 1, we have

F ot met L -

w
~

|
=l
N

p=0
= ™ + = 5 -
: p=20 (p*1) by 91 = i 5 mho 9 . - (A-3)

Thus we have the recursion for coefficients {gy} in terms of the {hp}:
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If we now refer to (6) and (7) and identify

g, = w,/nt h, =% /ni, (A-5)

there follows the moments in terms of the cumulants according to

k-1
i = () Xmm for k2l g = ey - (A=)

This is a slight generalization of [6, (10)]. This equation is immediately

inverted, to yield the cumulants in terms of moments:
X, =L _gk'l fork >1, X =Mdn (A-7)
k ™ ug i = Am X Mo z Sl Boes i

which generalizes [6, (11)].

In terms of the normalized cumulants and moments defined in (62) and

(69) respectively, we have

x~

-1

A
Mo S E

=
&

A
xk-m o fork>1,

,iAH

= exp(X,)

=
1
o
=
o
§

and

»

’/Y,k=

=
=g

k-1 . :
[k ﬁk - Exk-m ﬁn] for k > 1, (XO=,ﬂn u0>- (A-9)
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APPENDIX B. EXPANSION OF Hen(x+y)

The quantity Hen(x+y) is a polynomial of degree n in y. Therefore we

can expand

He (x*y) = % Yo ‘n% ; (B-1)

where yu will also depend on n and x. In fact,

y=0

=(3.%>m-1 [n Hen_l(t)—] = n(n-1) ... (n-m*l) He () =

t=x

where we used [5, 22.8.8] repeatediy. Using (B-2) in (B-1), we have the

alternative forms for the expansion,

n
He (x*y) = = (,r,:> e\ (x) y" =

95/96
Reverse Blank
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APPENDIX C. EVALUATION OF I (y) IN (94)

We have, from (94),

4
I(y) = ‘£ dx x* ™% L(:)(x) forn >0 . (C-1)
Then :
a =X atl e_y
I(y) = ; dx x¥ e™ 1 = y(atl,y) = %— 1F1{1sa*23y), (C-2)
using [5, 22.4.7, 6.5.2, and 6.5.12]. Also, we have from [5, 22.11.6],
e X (a),y _ 1 (_g n { -X _a*n _
x- e "L A (x) = = dx) e x } . (C-3)
Then for n > 1, -1) can be developed as

—
5
—
<
~—
|
\/—1‘
:
IH
CL
><
—~
I
R
3
—
|

where we set the lower limit of the evaluated integral to zero since

atn > a*l > 0.
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APPENDIX D. FOQURIER TRANSFORM OF GENERALIZED LAGUERRE POLYNOMIAL

We wish to evaluate transform

00
Alw) = [ dat etot ¢ 7t (la)(yy | (D-1)
5 :
Now
nt t® et L(:)(t) = (a%>n {e_t t“+ﬁ} forn >0, (D-2)

according to [5, 22.11.6]. Therefore for n > 1,

r it [d\" § -t ot
i - n
S dt e (EE) Ze R }
0
o n-1
jwt d -t La*n
j;e - d(&%) {e = }
oo
i Sdt e'ut —dn—lg‘t
w . dt e

where we used integration by parts with the fact that the integrated part is

n! Alw)

a+ﬁ} ’ (D=3)

(u3

zero at t = 0 and 0, since a*n > atl > 0. Repeated integration by parts then

yields
o .
. N jwut -t _atn (-iw)
n: Alw) = (-iw) J; dt e’ ¥ e t* " = r'(a."'l*'n) m c (D-4)

This is the result quoted in (104).

99/100
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APPENDIX E. RECURRENCE FOR EXAMPLE C

The starting point is the moment expression in (142):

fr(gﬂﬁ n+2h , 1e?h;f+l;% , (E-1)

Tll—\ $+1)

where h = (y*I*+1)/2, z = w292/4. Denote the {Fy term in (E-1) by
Fn’ and the leading factor by Gn; thus w = G Fn' There follows
immediately

= 2n+> | -
Gn = Gn—2 5 h-1 forn> 2. (E-2)

For the 1F; function, we refer to [5, 13.4.1] to get

1 n
Fo= 4 Bn+2h—3—)’+z)Fn_2 + (f+2- 5 -4 Fn_4_] : (E-3)

If we substitute (E-2) and (E-3) into u, = G, F,, and then re-apply

(E-2) in the second term, we obtain

Un = mz(n+-Y—2+Z) un_z - Y]I;» w4 Bn+y-3)2 —fz] un_4 M (E—4)

we also eliminated h. Starting values for B, can be obtained from (E-1).

For the special case (143) and (144), (E-4) reduces to

2
uo=w (n-1*z) Moo =

. w*(n-2)° (£-5)

n-4 >

F
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with starting values

1 -z 3.4,
Mg = 1, Wy =3 T w e lFl(—z-,l,Z) .
2 3 h 3 -z o1
My = @ (1+z), Hy =7 T oW e 1F1 é,l,z) . (E-6)

Kummer's transformation [5, 13.1.27] was employed in this last equation; these

forms afford accurate starting values for recursion (E-5).
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APPENDIX F. PROGRAM LISTINGS

Eight programs are listed in this appendix. They are given in BASIC for
the Hewlett Packard 9000 Model 520 computer. For ease of reference, a

shorthand notation is adopted:

P denotes cumulative or exceedance distribution function
) p denotes probability density function

H denotes Hermite expansion

L denotes generalized Laguerre expansion

RC denotes recursively via cumulants

DM denotes directly via moments

RM denotes recursively via moments

Table F-1. Shorthand Notation

Then, for example, the combination PHRC means that this program yields the
cumulative or exceedance distribution function in terms of a Hermite
expansion, by means of expansion coefficients determined recursively via

cumulants. The eight programs listed here are, in order,
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PHRC Figures 7 and 8

pHRC Figures 7, 9, and 10
PHDMandRM Figures 7 (and 8)
pHDMandRM Figures 7 (and 9, 10)
PLRC Figures 19 and 20

pLRC Figures 19, 21, and 22
PLDMandRM Figures 19 (and 20)
pLDMandRM Figures 19 (and 21, 22)

Table F-2. Program Abbreviations

The combination DMandRM means that this program gives the expansion
coefficients directly via moments as well as recursively via moments; the user

must select the procedure of interest.

The only input statistics we have given a listing for here is the shot
noise process used in examp]es'D and I; in particular, the cumulant and moment
routines are listed at the very end of PHRC and PHDMandRM, respectively. The
figure references given in table F-2 indicate where each particular program
was used in this report; the parenthetical references are alternative ways of
generating those fiqures. The remaining figures in this report require that
the cumulant and moment subroutines be replaced by the appropriate statistics

of interest.
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To save space, no subroutines are listed more than once; instead,
comments are made indicating where the needed routines are Tocated, according
to the coding in table F-2. For example, in program PHDMandRM, function
subprogram FNPhi, Tine 570, the comment is made that this routine has already

been listed in PHRC.

We now explain some of the details of the PHRC program, as an example, so
that a user can apply these techniques and routines to his particular
problem. The user must specify M in line 30, which is the maximum order of
approximation desired, or the number of cumulants or moments that can be
calculated. The notation DOUBLE in line 40 denotes INTEGER variables. The
user must select a« and 8 in lines 130,140; if they are chosen equal to
%95 By which have been computed in lines 110,120, then expansion
coefficients a; = a3 = 0, or equivalently by = by = 0. However, this

choice is recommended only as a starter on the search in a,8 space.

The CALL in line 150 is to the subroutine which calculates the expansion
coefficients for a Hermite series, recursively via cumulants, as can be
deciphered from the abbreviated subroutine title. The expansion coefficients
@ﬁ&are calculated and the running sum of bﬁ is calculated, both of
which are printed on the CRT vs n. Also, a plot of the expansion coefficients
@A&is made in this subroutine, from which the user must decide on the order,
N, to employ in the approximate cumulative and exceedance distribution
function; alternatively, he can reject the sequence of{bﬁ}so obtained, and

re-run the program with different «,8 values.
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When a satisfactory a5 B pair is obtained, the limits UpsUy oOn the
range of arguments of the distribution must also be specified; this selection
is aided by the print-out of the center and rms width of the density under
investigation. A plot of 100 values of the cumulative and exceedance
distribution functions is then made on a logarithmic ordinate. The various
subroutines are self-explanatory and are keyed to the equation numbers in this

report.
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PROGRAM PHRC

STER PLUS COMTIMUOUS FART OF SHOT HOISE CIDF, Feodwl TR 727V7, FIGURE
COEFFICIENTS 0OF HERMITE EWFAMSION FOUND RECURSIVELY WWIA CUMULAMTS

M=2a P MASIMUM ORDER OF APPROMIMATION; HUMEER OF CUMULAMTES REQUIRED

IOUELE M,I,H,K ! INTEGERS <« 2+31 = 2,147,483, 848
FREODIM Cumc@:Ma,ACa:
FEAL CumtB: 1885 A ;
CALL CumulantzdM,FPE, Tun
Cemnter=Cumsl
2=0umi 2

l':'l’u"f-'h'F'F"'I
34094

B il

! = -TEF AT ORIGIH

!  CEMTER 0OF PIOF povun

' MEAM SRUJARE SFREEAD OF pooul
i

I

I

Rz SPREAD OF pciwd
THE CHOICES Alpha=Atpkag AHT
Esta=Estab WOULD MAKE ARCL1I=A

.

—+

i

[
o ||

jeal

=2
Cam |T|

e e
=%¥1.5
CHLL Fn»++hr _ia cuncM AT pha, Beta, Cumd#a (AO®D D ! FC
FRIMT “Center = ";Lcnfhr
FEIMT “"Rm= =";FEms
Fl=1, -SQRC2, %P1
IMFUT "ORLDER AMND LIMITS:",H,J1,U2
FEIMNT "ORDER AHD LIMITS:",H;UL;U2
Oy=Cl2=1t1x-188,
FLOTTER IS “"GREAFHICES®
GRAPHICS OH
WIMDOW Ui, 2, -1&.
GRID Du*lu.,l
FOR I=8 TO 1g4
=101 +TDg*]
T=CU-Alphas Beta
CALL HermitedH, TyHe(sm2
Sum=@,
FOR K=1 TO H
Sum=Sum+ACE dEHe (k-1
HEXT K
FeA@ o #FHPRICT i =FL*ESP (-, ST T % Sum ' PEOEAEBILITY THAT RY < U

Lxe]
g
-
'.ll
Il

,_
]
.

IF U=, THEH P=F+F@ ' ALDDITION OF STEF AT ORIGIH
FOIa=F

IF F:B. THEH 488
FETHJF

GOTO 41@

FLOT U LGTCR?
HEST 1

FEMUP

FOR I=8 T3 148
=1 +0uxlI
P1=1.-FCI2

IF F1:a. THEH 4348
FEHUF

GOTO SaA

FLOT L, LGTERL
HE®T 1
FEHLP
GOTO 1948
ENT

1
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PROGRAM PHRC (cont'd)

July
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Fhi=g.

EHD SELECT

IF #>8. THEH Fhi=1.-Fhki

RETUREMN Phi :

FHEMD

|

SUE Hermits¢DOUELE M,REAL X,Heis): ! Heomi s 2q.
DOUELE K

Hed@nr=1, >
Heol =

FOR kE=2 TO H

Hedki=k#He (k-1 -k -1 asHedk-20

HEST K

....
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=
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=
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2 SUE Momnt_wia cumnt COOUELE M, RERL Cumd®d, Momd® s boed. A-8

oty

LT N

DOUELE K, T

FEAL Moma
MomC@i=MomB@=ExP o Cumd @0
FIR KE=1 TO M

T=1.

AR IR
(AU AU AN

DU IR
[xu]

=
DX

204 S=Cum K #Mand i
ERRE] FOrR J=1 TH k=1

FEA T=T*k=-J:

T | S=ES+TxCumck~-Jr*#Mams T -
9449 HE®T J

L
fan ]

Mo ko
HEXT K
SUUBEHD
!

[¥y)
YRR AN S
[ ]

o

oo
oo

=
[
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TR 7377
PROGRAM PHRC (cont'd)

DOUELE K, T
REARL MomB

SUE Cumnt_wia_momnt COOUEBLE M, REAL Momo#3, Cums s | B

Mom@=Mam 3

Cumt@r=LOG MamE

FOR K=1 TO M

T=1.

S=Mam ks

FOR J=1 TO k-1

TeTsik~JamT

S=E-TeMomd JTo#Cum(kK-J)

HE®T I

Cumck »=SMoma

HE®T K

SUEREHMD

]

SUE Cosffhr_wia cumdDQUELE M,REAL Alpha,Beta, Cumass , AOer D
ALLOCARTE EBi@sMo

DOUELE K, J, M

F=Est a*Beta

Cumdld=CCumdli-Alphar~Beta ' MODIFIED HMORMALIZED
Cumc2i=sCumi2r~F-1, o CUMULAMTES. FOR K=1 & 2; =g. &3
FOR K=3 TO M

F=F#Beta*(K~1>

CumtEy=Cumiks-F POHORMALIZED CUMULAMTS; =g, &2
HEXT K

ACB 3 =BCEI=EXNP O CumCB )

F=1.

-n
C
el
.".
—
—
=

F=F#k

BCEY=RCK»*#SARCF )

HEAT K

Mu=M=+18

M THEH 1366
shold=-7.

T2=Threzhaold+2.

V=18, ~Threzhald

GIHIT

FLOITTER 1% “"GRAFPHICS™

GEAFHICS OH

WIMDOW @, ,FLTu M=y, T2, 8,

LINE TwPE =
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TR 7377

putly
=

FoR JI=
MOYVE T,
DEAMW T,
HEAT J
FOR J=
MOVE D.,J
LEAW M=
HE®T T
PEHLUP
LIME TYFE 1
IMAGE 40,2044
FRINT * K
Sum=g,
FOR E=8
B=ECkE
Sum=Sum+EB*E

i LS I O i o R W R I
oo S S0 G o D

o
=1

(1]
=
()

MR
=

T M

MR
[l

5] FRINT USIHG 1Se
(5] IF E<Y THEH 1&g

=
o)

T=LETCE
GOTO 17498

IF B:=% THEH
W=TZ-LGTO-E>
GOTO 1768
Y=Threshaold
FLOT K,

HEXT K

FEHIUIF

SUHEEHD

!
SR
g lap=g, 2
Sigmaa=1.

FO=EHFP -D0uwerlaps
ALLOCATE MomoBs Mo
DOUELE K
S=Sigmaa*3ignaa
Cumc@dr=a,

Cumc i r=0uer
Came

DL LT L e s ) R A SRS [ L 4 [ O R O 4

D) B O LR Y o

)
=

=
]

1236

Wr R I
20D

10
= ==
Do o

L3 o e
Dl O x|

X
[

—
B

ol

LECt B0 ) [ o8

g
D}

)
o

ULRE I IR R N R I Y R IR s I S 2

=
D)
T

(A an}
—
(X

o
=

LD
Dax]

=luwerlapsssd,
FOR I Ta M
Cumckr=Cum k=20 %S5k
HEAT K

CALL Momnt _wia
MomtEr2=Maom i@ »—FQ
CALL Cumnt _
SUUEEMD

-
=
[an

[uy
T
D I n )

,..
[xa]
= =
AR

WA

el e i i e o T e e e e R S T S TP U TP
X =

¥
— 1Y
=
P

110

Cumigl amt = CDOUELE

=9 qm 2a*,

cumnt CM,

momet Oy,

PROGRAM PHRC (cont'd)

ZTEF 18

JHM.1FDED

B3k, E, Sum
5}

My FERL F@,Cumy*an

AW . M. FULSES.:
FRAEAMETER
FROEREILITY
AREAY FOR

-
SEC

OF ZERD
MOMEWTS

SSEPI#SORC, SxPI

-‘

S+

Cym ey Mom®
! MOMENT CORRECTION F

Mm%, Cumd #30

SHOT

Siam "

HOISE
* AVERAGE FU

HMFPLITULE

OF IMPULZSE

OF

HT

SHOT

4s. 14vV-158
E DURATION
OF RAYLEIGH HMPLITUDE FIF

HOISE

ORIGIH
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TR 7377
PROGRAM pHRC

COMTIHUGUES PART OF SHOT MOISE FPDF, poiul TR 7377, FIGURE =
COEFFICIEMTE OF HERMITE EXPAMSION FOUMD RECURSIVELY “WIA CUMULANTS
M=&a ! MHHIHUM ORTDER DF AFFREOXIMATION; HUMEBER OF CUMULAMTS REGUIRED
DOUELE M, W K ! IMTEGERS < 231 = 2,147,4582,648
REDIM luru'H H“J AedeMs He B M2
FEAL Cumid: IHM'.Hfﬂ 198y, Hed@s 1
CALL CumulantsoM, P&, Cumdxa)
Cemnter=Cumiln
RE=Cume 2>
FEmz=SRRCR2
Alphad=Cent s+
EetaB=Rm=
Alpha=Center
Eeta=REm=#%1.5
CALL Cosffhr_wia cumtM,Alpha, Beta, Cumds)  AC#00 ! R
FRINT "Center = ";lenter
FRIMT "Rmz =";REm=
Fil=1. CBeta*3nR.2.«F15)
IMFUT "ORDER AMD LIMITS:",H,Ul,U2
FRINT "ORDER AMD LIMITS:" ,H;UI;U_
Dy=clUz-Uix-18a,
FLOTTER I% "GRAFPHICESY
GRAFHICS OH
WIWMDOM U1,uz2,8.,.15
GREID &.,.83
FOR I=8 TO 184
U=1+0ux]l
T=¢U-Alphar<Beta
CALL HermitedH, T,Hec*u:
Sum=RCAn
FOR kK=1 TO H
Sum=Sum+A Tk #He (K
HEST K
F=F1#EXP (-, S*T+T»*Sum ' ! FOF OF RY AT U
FLOT U,F
HEST I
FEHUP
GOTO 138
EHD
USE ROUTIMES IM PHRC

.._

[ut}
™

Lux]

Fa I5 STEP AT ORIGIH
CEHTER OF FPOF povul
MERH SEUARE SPREAD OF poiul
EMS SFREAD OF poiul

THE CHOICES= Alepha=ATphat
Bet a=Est 28 WOULD MAKE A

5] AHD

1a=AC2o =R

111



TR

A}
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I

=
Al
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A
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(RN I S | I N P T OO T Ay BT AR R N
Dvco O o o T hc N U T S B o I e O n )

—
U |

AR Y X
U U U

et L ) I = 5 B (N U IS W
DI n )

1
1
1
1
1
1
1
1
1248
1
2

DD

w80 =) f

T
DUl A

A

= LN fa DD DY I
Do o IR I R o I ]

Dund

R U Xy ]
=

1 -
=

[x4]

Lhan Cnoch o b b fo b b e e B e a0 00 D0 D D G
AR

D) [ S
A

jusly
L

DU I

7377

I STER PLUWS COMTIHWOUS

' HERMITE EXFAMSIOHN
M=0a !
DOUELE M, I,

FARE
FOUMD
MASIMOM QRD
M, K

REDIM HumLH'H\ Aedaps, H
REAL Momc@: 1UUJ HﬁB: EG
CRLL Moment = oM, FU.I1 *

Center=Mamilis

TthH.GJ
Pﬁ=”ﬁmi2?fﬂom(@3—CEﬂtEP
Rms=

Hlpha Center
E=t al =
H]ﬁ Iwn*rr

CHLL
I CHLL
FREIHT

ia_mamill,
_mam o,

-JEffhP
"Center Milente
FEINT "Emsz =":Em=
Fi=1.-SQR<Z. %P1

IMFUT "ORDER AMD LIMI
FRIMT "ORDER AHD LIMITS
Du=CUz-U1i»-108,
FLOTTER IS "GRAFPHICS"
GRAFHICS 1OH
WINDOW U1,02,~-18.,8.
GRID Du*ig.,1.
FOR I=8 TOQ 188
=11 +Tyx1
T=LU-Alphar<EBeta
CHLL Hermited(H, T,He%13
Sum=9,
FOR k=1 TO H
Sum=Sum+ACE Y #He R -1
HEXT kK
F=ACA*FHPRiI (Tr=-F1%EXP
IF U»=a. THEHM F=F+F@d
Frlas=pF
IF P:83,
FEHUIF
GOTD 428
FLOT U, LGTORD
HE=®T I
FEHUF
FOR I=& TQO
U=U1+Du=1
Fil=1.-PFiI2
IF FP1»83. THEHM S8/
FPEHUF
GOTO S1a
FLOT U, LGTIF1
HEST 1
FEHUF
SIOTD 208
EHD
1

ia

THEH 414

14

112

PROGRAM PHDMandRM

T OF SHOT
DIRECTLY

HOIZE CLF,
YIA MOMENTS

Foiury COEFFICIEMTS OF
OF RECURSIVELY WIA MOMEHWHTS

ER OF AFFROWIMATION; HUMEBER OF MOMEMTS REGUIRED
! IMTEGERS < 231 = 2,147,483, 8483

RN
.HE:E 183 Fo@: 1880
K Fa IZ STEF AT CQRIGIH

CENTER
MEAHM

1F FIDF
SHUARE
EMZ SPREALD
THE CHOICEZ
BEst a=FEet af

prohdl
SPREAD OF
OF pro Cud
Alpha=A1ph,
WOULD MAKE

#*Center L=

och o o> oS o o> |""|

Alpha, Bet
Alpha, Bet
p

IH
FH

A MomiEs  ACEDD !

Ay Mami sy JACED !

TS, H, UL, U2
T MU Uz

LOETETr#50m ! FROEREILITY
! AODDITION OF

THAT
STER

Fl '...'
AT

L L
ORIGIH



TR 7377
PROGRAM PHDMandRM (cont'd)

=
=

DEF FHPRi{H ' HART, page 1458, H#S5FES & #57I5
I LISTED IM FHREL

FHEHMD

i

SUE HermiteCDOUEBLE H,REAL ¥,Hei%2> ! Hespoda
' LISTED IH FHELC

SUBEMD

|

SUE Hermite {CIOUEBLE M,REAL H,Hic#3d | HirsmdHiso=itam Hesnois ed.rd-5

IQUEBLE K ! MODIFIED HERMITE FOLYHOMIALS

Hidaar=1,

Hifli=4

FOR & TO H

Hickor=MeHi (k=10 + k-1 s%HigK-22

HE=T K

SUEEHMD

DoV o B e I x )

Do ]

.|:|:| DOCIR B T T s W |
LR R e Y I =N Y ¢

)
[on

=
Z 3

o

gD
=

)
D]

o)
=

L¥n}
1=

ZUE Momnt_wia cumnt CDOUELE M, REAL Cuma®0 Mom (%30

LISTED IM FHELZ

SUBEMD

1

SUE Coeffhd_wia momcDOUBLE M,REAL Alpha,Beta, Momc#i, {00

ALLOCATE He(@:Mi ,FodeMy , Bo@: Mo

DOUEBLE K J, M

1128 CALL HermitedM,~-Alpha Beta,Hei®3

1128 T=Fi@y=1,

1148 FOr K=1 TO M

1158 F=FlE»=FiK-10%k

1153 T=T#Eeta

1174 He (K i=Hs (ki -F ! HORMALIZED HERMITE FOLYHOMIALS;
=35} Mam K =Mom K i F*T2 ! HORMALIZED MOMEMTS re Eeta; =q.

1134 HE®T K

-

o
LUl

T o
]

RVt I | I CR OV (i
=t

)
Do)

=
D]
3
o

—
—_
— T
D B )

Pyt
[

Ty M
AL O

OF J=8 T0 K

15 S=S+He Ty EMam k=T
LYe] HE=T T
3 Rk a=5

T

=4 @

I W I S
I
~
-

Dex]
T
—
m
]
Dix]
o]
O
._Ti

SN AEAN AN NSNS ERD

MAT E=A.F

M THEM 1249
TP'n'-__.hn:n] d==-7.
T2=Threzhaolds:z,

V=18, ~Thteshold

GIHIT

FLOTTER I3 "GRAFHICS"
GRAPHICS 0OH

WIMDOW &, ,FLT M=, T2, a.
LIHME TwPE 2

S
U A ]

113



TR 7377

PROGRAM PHDMandRM (cont'd)

13 FOR I=@ TO M« STEF 18

MOVE J,TZ2

14 IREAKW J,8.

1428 HE®T I

1438 FOR J=T2 TO 4

1448 MAavE 8.,J

1458 DRAK M, T

1458 HEXKT I

1478 PEHUP

1428 LIME TYFE 1

IMRGE 4D,204%,M.17DE>

FRIMT * K Bk Sum"
Sum=4a.

FOR K=& ToO H
B=Bik2
Sum=Sum+B+E
FRINT USIHG
IF E<' THEH
W=LGETCBX
GOTO 15638

IF B>-% THEH 1528

Y=T2-LGTE-ED

GOTO 183248

Y=Threzhaold

PLOT K,

HE®T K

FEHLP

SUEEND

]

SUE Cosffhr_wia mom(OOUELE M,REAL Alpha,Bsta, Momisi, A0
ALLOCATE Hiv@:My,FC@eMI,BO@sMo

DOUELE K, J,Ms

CALL Hermite i0M,Alpha-Beta,Hi(*i

T=Fc@a=1, '

FOR K=1 TO M

F=FoE 3 =FOK~10%K

T=T#Eesta
Hicki=Hi K

—
Ja
-
U U o

—
+a
¥u}

Bt I ST ) [ S P (T U R ' R e ) IS R PV T O I S o NS
Lo R e S 1

[y B o R v )

=
[

o O e T o T e IO o T Y A |

Do

Dm0

<F 1 HORMALIZED MODIFIED HERMITE FOLYHOMIALS
LA CFET D ! HOEMALIZED MOMEHTS re E

=Y
=
Etoay

B B B Bt Bt B e Y s e n s e e (N O A R IR I ) ) IO S B |

LOCRRSN B I ) I SN N (i RN Y )

LU U O )

FOR k=8 TO M

S=Mom k)

D IS
(O b I X ]

310 FOR J=1 TO K
2 S=Z-HiCJheACK-T

HEXT

DU ] l"_-£| Do )
= T
m -
e
— =
n
[ | IR I

(==l ]

N T S T SO T

DU o
ITTm-
=
feu]
M A
-

I a
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=
Do)

=
1%

1,
e= e
D R U o T T U I v B OB A ]

= L =
DU AU

o
S 0]

oo

= = == X
LA ACOUREE KV A

o
[xx

3 .
AR A DA DA B TN R
DB RO I U o]

.
[xx)

S
DU N

[xx]

= =
LR AR A

=
)

L 1)
A D R )

AN
Dot

. TR 7377
5 K PROGRAM PHDMandRM (cont'‘d)

Me=M:x+18

IF Mux<i THEM 1238
Threshold=-7.
Te=Threzsholds2,

V=18, ~Threshold

GIMIT

PLOTTER 15 “GRAPHICS"
GREAFHICES OH

WIHDOW &, FLT(M=y, T2, 8.
LINE TWFE =

FOR J=8 TO Mx STEF i@
MOYE J,TZ2
DRAW J,4.
HEXT I
FOR I=T
MOVE B.,J
ODRAW M, T .

HEST J

FEHLUF

LINE TYPE 1

IMAGE 40,204, M. 1FDEY .

FRIMT * K Bk S
Sum=4d.,

FOR K=& TO M
=Bk
Sum=Sum+E+E
FRIMT USIHG 28893E,E, Sum

IF B<Y THEHW 2

Y=LGTCES

GOTO 2228

IF B>=% THEM 2218

Y=TZ-LGT<-Ex

GOTO 22248

Y=Threshold

FLOT k%

HEXT K

FEHUP

SUEREND

I

SUE Momsntz=CDOUELE M,REAL F&,Cumixo I SHOT HOIsE £qz. 147-15@
Ouerlap=d, 2 bOAY. MO, PULSES-SECD % AYERAGE FULSE IURATIOH
Sigmaa=1. Y FARAMETER 0OF RAYLEIGH AMFLITULE FIF
FR=ExPi-Ouverlaps { PROBAEILITY OF ZERQ AMFLITUDE OF SHOT HOISE
ALLOCATE Cumidsms ' ARREARY FOR CUMULAMTS

DOUELE K

Z=Zigmaaxsigmnas

Cumc@s=8,

TO B

AN

[ (N]

=

Cumclr=0uerlap*3ignaas, 25%PI30RC, S*P1

Cumc2r=Duerlapsied, 73,

For TO M

Cum ok i=SCumik =20 %Sk sk 0k +1 )

HEST K

CHLL Momnt _wia cumet oM, Cums s Mam s o

MomcBr=Momi@)-Fa | MOMEMT CORRECTIOW FOR IMPULSE AT ORIGIH
SUEEHND
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TR 7377

PROGRAM pHDMandRM

COMTIMUDUS PRRT OF SHOT MWOISE POF, poful; COEFFICIEMTS OF HERMITE
EAFAMHSION FOUMD DIRECTLY WIA MOMEMTS OF RECURSIVELY YIA MOMEHTS
M=5a ! MAXIMUM ORDER OF AFFROXIMATION; HUMEER OF MOMEMHTS REQUIRELD
IOUELE M, I, M, K ' IMTEGERS < 2+31 = 2,147,483, 548
FEDIM MomcB:MI,ACE:MY Heo@:Ma
FEAL Momdi@: 1883, ACHA: 189G, He(8: 160
CALL Momernts oM, FE,Momd o0 ' P8A IS STEF AT ORIGIH
Center=Momdl 2 Mam{B ! CEHTER 0OF PIF poiul
tZ=MomeZ o Mam 8 -Center#Center | MEAM SRUARE SFREAD OF pcodud

i

!

!

,_.,_,_...
DU U RN I i)

b

Dot XY
=

]

15!

RS TR T VR O o

o)
(3]
—

T
=

>

[V
5

Y
)
g

[xx

FMS SFREAD OF podul
AlphaB=Center
Bet al=Rns

Alpha=Cent er
Beta=FRm=+1.3
CALL Cosffhd_wia_momiMyAlpha, Beta, Mamosd A0 ! I

POCALL Cosffhr_wia momiM, Alpha, Beta,Momd %2 ACe0 ! R

FREIMT “"Center = “jCenter

FEIHMT “"REmz =";Rns

Fi=1.s{Beta®*SQR02,%FPI2D
IHFUT "ORDER AMD LIMITS:",H,U1,Uz2

FRIMT "ORDER AMD LIMITS:",HM;Ul;UZ

Du=cCllz-U12-189.

PLOTTER IS “GRAPHICS®

GEAFHICE 0OH

WINDOW U1,02,3.,.15

GRID &.,.83

FOR I=a TO 184

U=i01+D0u*l

T=dll-Alphalt " EBeta

CALL HermitsdH, T,Heo%00

Sum=ACE D

FOR K=1 TO H

Sum=Sum+ACE Y EHe (R 2

HEXT K

F=F1<EXPI-.S*T=Tr*Sum ! FOF 0OF RY AT U

FLOT U, F

HE®T I

FEHUF

GOTo zoa

EHD

USE ROUTIHES IH FHIM&EM

THE CHOICES Alpha=A

Tk
Teta=Bet ad WUILD MAKE

= & == ST
DU I R o RN

= =
DU o I o x|

Lo N T (s R | S O T LS R S
fan ]

Lcx B OCR o R o Y

DRSPS [0 PO PR3 R3PS J) e ke o e e b e e b e
<

=
v

oo

P
(xR

&
e
D)

DO Y]
=1 T ] e
Do R e ]

R
b

5]
5]

=
[xx]

B UL Uy T et
LA i

..,.
fn]
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0 - TR 7377
pROGRAM PLRC -

POSTEF FLUS COHTIMUGUS PART OF SHOT MOISE CDF, Poiulg TR VIFT
' COEFFICIEMTS OF GEM. LAGUERRE EXPAMSION FOQUMD HEEUESI”ELn W1
M=7a ' MASIMUM ORDER OF APPROXIMATION:; HUMEBER OF A H
DOUBLE M, I,H, K I IHTEGERS < 2~31
FEDIM Cumc@:Mi,Av@:M, LCBM)
FEAL CumcB:168@),ACB: 1800, L8 10A R
CALL CumulantsOfM,FE, Cumy s b

=
[ex

FIGURE za
CUMULAMTS
FEGUIRED

=
DU eV

AR RN
LU

{-
|-

3
S STEF AT ORIGIM

i IR i RN O (8

U
oy
LR

q 3
I:

0T

1
=15 Center=Cum0 13 . ! CEHMTER OF.FDF potud
45| F'—Ium"; ' MEAM SRUARE ZPREAD OF pedul
i == 220 ' EMS SPREERD OF podul
19 Alphab=Center#Center-R2-1. ! THE CHOICES Alpha=Alphad AHIT
24 Estal@=R2-Center ! Eeta=Est ad WOULD MAKE ACly=ACZ2»=4
s Alpha=.74
46 Beta=2.1
bS] CALL Coefflr_wia cumiM,Alpha,Beta, Cumd#) (Ao2a0 ! RC
1] FRIHNT "Center = ";lentar .
T FEIMNT “"FEms =":;Rmns

I
[ ]

Al=Alpha+l.
a1=1.-A1
Fil=1. -FHGamma¢Al:

IMFUT "ORIER AMD LIMITS:“,H,U1,uZ
FREINT "ORDER AWD LIMITS:",t ,UI;UE
Du=cll2-dir 186,

PLOTTER IS “GRAFHICS"

GRAFHICS GOH

WIMDOM U1,U2,-11.,8.

GRID 4.,1.
Frasr=Fa

PLOT B.,LGTLP
FOR I=1 TO 1HL

Fao I
DU )

ot

LA I WY

Do R ot T 0 Y T o T Ao o B U B et}

[ |

N
|:|

,_
[
=
o

DO N SO WS O T O O R (ST OO (6 T N T S S S SVR S S S S
i ]

1a L=U1+Du#Il
24 T=U-Bsta
I3 CALL LaguerredH-1,A1,T,LO%00
248 Sum=ACAYEFHFLICAL, Trx01
258 FOR k=1 TO H
Ea SUm=Sum+ACK I LK =13 0K

HEXT K

Fol i =P=FO+F1+EXF(-T+A1=LOGIT 3% Sum ! FEOEBAEILITY THAT RY < U
IF FP:B, THEH 42a
FEHUF

GOTO 428

PLOT U,LGT<F2
HE=T 1

FEHLUF

FOR I=a TO 1985
=1 +0yx1
Fl=1.-F{In

IF P1x8, THEH S1a
FEHUF

GOTOD 328

FPLOT U, LGTCPL
MEST I

FEHLUF

GOTO 218

EHD

I

Ty
X

DUy
[l

Do e
P
fun )

P ON
Do R x]

v R e S )
DU OV U A

o]
[ U

o =
Dol )

l'_ﬂl'_ﬂl'_ﬂ(.ﬂl'.rll'_rl"_fl-&-&'-l'a‘l-‘-.&-CKJ'T-CZ-I-'A-I‘Al'.l.
D)

LU B P OO T U v I X

d
b
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TR 7377

PROGRAM PLRC (cont'd)

Y
[ix]

TEF FHGamma®2 | Sammal sy
LOUELE H,kE
H=THT 0w

R=H-H

IF Hxa QR R<:G

1 =]

RN
=

in i

on

oI

(21

(a1}
=

THEM &48

RRLY]
[xn )

Dax ]

STOP

IF R*B. THEH &78a
GCammaz
GOTO V45

i
[un )

T Oy 1y
SN B I I A 0 I W o B o
D e A )

Iy iy
DX)
[xx(]

E F=4235 3

+

=
R
Do B

XX
12,

H=d499,

DI
I A S

oo
i
Dl

Cammaz=F<0R

IF Mx2 THEH 728
IF H<Z THEH 33
Gamma=Ganmad
RETURM Gamma
Gamma=Gammas

FOR E=1 T3 H-2

& X

=) T ) ) ) T

LS COCHESN I PR I SN OO OO o LY w O TN R R 1 I N T Mo S}
[ex]

Do Ol

"
=

Gamma=Gamnma® x5
HE®T K

FETUREH Gamma
R=1.
FOR k=8
R=R*H+k D
HEXT K
Gamma=Gamnmaz R
RETUREM Gamma
FHEHD

|

LEF FHF1CAL, %
TIGUELE K
T=2=1,

FORE k=1 TO 288
T=T#& " CAL+ED
=S4+ T

LOCR R Rt B B I |

= = = =
[OOSR R o R AN

GO 0D 00 0D 00 00 00
[ o )

W I
DU )

I )
[un]

LS N (R y ]
oo 0o

W

3
4
S
&
=
]

)
fax]

w0

MEXT K

Nu)
¥y
U ]

[
=
5
=

[

RETLRH
FHEHD
|

—_
[
D]

oS
o

L)
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IF Ti=1.E-17#%% THEM RETURH =

PRIMT "288 TERMES IHM FHF1 AT";

wia HART, page 222,

FRIMT "FHGammadxr I35 HOT DEFIHED

Gammal 2+R

FOR = = ¢ 5 !

=

tor &

IFLOL AL+

R
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v TR 7377
PROGRAM PLRC (cont'd) ' < .

SUE LaguerrziDOUBLE H,REAL Alpha, s, Losi: L oeg.
DOUELE K

Al=Alpha-1.

Leda=1,

Lilr=RTpha+l,-¥

FOR K=2 TO H .

=%
=
[}

LE R I ) [ AN
MU

DU

[E]

=
Do)

1) LekKisCiR+E+AL-EisL0k =1 0= (E+AL 2L 0K —-23 0 9K - '

D]

HEXT K .
SUEEND
|
SUE Momrnt _wia cumnt CDOUELE M, REAL Cumoss, Momd#
LISTED IWM FHEC
SUEREHD
i
SUE Cumbit _wia momnt CDOUELE MyREAL Maomo D, Cumd s
' LISTED IH FHELC
SUEEHND
i
ZUEB Coefflr_wia cumiDOUELE M,REAL Alpha, Beta, Cumos ) A
ALLOCATE EC@:sMir, Co@eMx,DotaM
DOUBLE K, J,J1,Mx=
T=B=sta
CumCla=Cums1ar-T
FOR K=2 Ta M
T=T#Eesta* k~12
CumtEs=Cumak T ! HORMALIZED CUMULAMTS; e=q. &2
HE®T K
Al=Alpha+l.
FOR J=1 TO ©.
Ji=T+1
T=1.
S=A1
FOR K=1 TO I
T=T*(kK-J13 7K
S=ES4TECum oK 2
HEXT E
DoJa=%
HEST T
RLBXI=BC@r=Cr@i=EXPCCumcRr
=1,
FOR kK=1 TO M
S=4.
FOR J=1 TO K
S=S+DCTr*COK=-T0

HE=T J

=
[

=S|
DU )

..
[

— e e b b ek b b s e e b b
D]

=4 Py e L0 o

[un]

5}
5}
5]
)
&
1
1
1
1
1

[y
w0000 ) Ty L
oS D

n

(]

)
[un]

o

=J T 0 B O e 5
= =

DRI R |
DU R o R I A )

ol
15,

n

,.
XX
=

N

Ty O Ty n
SN L
[

X
Dax(]

oy iy 0]
oE

[xA]

5}

oy

¥
o
Do DO o I x|

[ ]
[
{5

=13
Ak
Bk
MEST K

T T T S S T S S Y VP Py

[0 I O (N ]

D O X

IR I I I I
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PROGRAM PLRC (cont'd)

8 Mx=Mz+18

5] IF Mx<M THEH 17v&@

5] Threzhald=~-7.

5 2=Thresholdxz.

%] V=18, “Threzhold

5} GIMIT

a8 PLOTTER I3Z "GRAPHICS®
5] GEAFHICS OH

5 WIMDOMW 8. ,FLT M=, T2,0.
3 LIME TYFE =

5] FOR J=& TO Mx STEP 18
5| MOME JT,T2

5| DREAM J,8.

5} HE®T J

g FOR J=72 TO #

5} MOVE 8, ,7
5}

5|

]

5]

5}

a

5]

5]

K]

5]

A

(5]

5]

a

i

&

5]

R I B e 4]

000 000D g )y

AT R ey S| I R TIN5 B IS O e I N N R O (0 Y ]

¥ W I O R B e X )

DRAW M, J
HE®T J

FEHUF

LIME TYFE 1

IMAGE 4D,2¢4%,M.17DE

PRINT ™ k. Bik Sumt
Sum=a.

FOR K=8 TO M

E=BikK

Sum=Sum+E+E

LYY Y n Y RN i )

a N

O

PRINT USIMG 1968;K,E, Sum
IF E<Y THEM 2Z0&@

oo @I @D

Y=LSTCE?

GOTO 218a

IF E>=V THEH 2898

Y=TZ-LETC-E>

GOTO 2184

Y=Threzhold

FLOT k,Y

HE®T K

FEHUP

SUEEHD

I

SUE Cumulant=(DOUELE M,REEAL FA, Cumsssd ! SHOT HOISE
I LISTED IH PHRC

SUEBEMHD

JP3 P P T P Rl . = e b s et bk b b b e b b b b e e e s e
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[x]
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[xx

DA RN Y]
D)

=

[xx3

=

1!
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=
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oot

R

[x
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[in
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X
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o0

B S S S SN _ LRI P IO IO OO
o0

[ O PR O I

D)

TR 7377 .
PROGRAM pLRC

COMTIMUOUS FART OF SHOT HOISE FDF, pooud TR 737V7, FIGURE 21
COEFFZ, OF GEMERAL. LAGUERRE EXFAMSION FOUND RECURSIVELY YIA CUMULAMT S
M=7 ' MAAXIMUM ORDER OF APFROXIMATION; HMUMEER OF CUMULAMTS REQUIRED
DOUELE M, I,H,K ! INTEGERS < 2~31 = 2,147,453,648
FEDIM Cumc@:Mr,AC@zM:, LIAzMD
RERL Cum{B:IBB,‘H'U 18@,L08: 188
CALL CumulantsoM, PO, Cumiss) | Fa I5 STEF AT CQRIGIH
Center=Cumtl> ' CEHTER OF PDF pciul
FZ=Cumv 2 ' MEAH SQUARE SFREADT OF podul
i i
I
I

EMS SPREAD OF povul
THE CHOICES Alpta=Alphad H
Beta=Het 20 WOULD MAKE AY1Lx=A

m
i O

Ir_wia cuniM,Alpha, Beta, Cumisd, AL ! FC
PEIHT "Center = ";Center
FEINT "Em= =";Rm=
Fl=1. 0Esta*FHGammalAlpha+tl, 20
IHFUT "ORDER AHD LIMITS:",H,U1,02
FRINT "ORDER AMD LIMITS:",H;U13UZ
Du=clz-U12-1a88,
FLOTTER IS “"GRAPHICS®
GRAFHICS 0OH
WIMDOW U1,02,8.,.15
GRID &.,.82
FOR I=8 TO 1488
U=U1+Du*1
IF U<B. THEH ¢
IF U:x&., THEM 2
FLOT B8.,4.
GOTO 486
T=U-Beta
CHLL La aguer recH,Alpha, T,Loa
Sum=Ha0
FOR K=1 TO H
Sun=SumtACE LK
HEAT K
F=Fl*EHPC-T+RAIpha*L0G0 T ¥ %Sum ! FOF QF RY AT WU
FLOT U, P
HE®T 1
FEHUF
LOTO 13@
EHD
UZE ROUTIMES IH PLRC

oy
n_‘n

B
2

=

I f‘
A
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PROGRAM PLDMandRM

STEF FLUS COHTIMUOUS FART 0OF SHOT MOISE CDF, Fodul; COEFFICIENTS OF
CEHERALIZED LAGUERRE EXFAM. FOUMD DIRECTLY AMD RECURSIVELY VWIA MOMEMTS
M=vo 'O MARIMUM ORDER OF AFFROXIMATION; HUMEER OF MOMEMTS REQUIRED
DOUELE M, I, HM,K PO IMTEGERS < 231 = 2,147,483,6845
FETIM Hnm'U.H,.HHB:MD (SR
REAL MomiH: 1883, Acd: 188, L1
CALL Moments M, P, Momd ! STEF AT ORIGIH
Center=Haomi 1 Mamd @) I CENTERE OF FDF poiud
Ra=Momuzr Mom{@r~Center*Center | MEAN SOUARE SPRERD OF Pt

I

1

i

AR RN I
T D S 0T
—

e

1l

15

™ -
=
3]

5|

(X

By, P

5
l"-‘l

i 16
FB I

B

s om

Diy] |_‘|

—
=

+:

[}

LY e I 1 ) RO N (M
& N

o
)
o

Dex}

Fus=SRRIRZ2 FERs SPREAD OF poius
RlphaB=Center*Center-R2-1, THE CHOICES Alpha=flphag AHI
Center Bet a=Eet ad WOULD MAKE Hﬁ1}=Hf*“

2 =g

-
Dun

,_....
o
)

M
)

_Wia n--nuH.H]f hia, Beta, Mom s, AL%0 D ! I

PEALL Cosfflr_wia momiM,Alpha, Beta, Mamo®d Ao ! R
FRIHT "Center = .Ihnfhr

FREIHT "REmsz =";Fms

Al=A1pha+t,

Ol=1.-A1

Fl=1. FHGammalA1L
IHFUT "ORDER AWD LIMITZ:",M,U1l,u2

FRIMNT "ORIEE AHD LIWITS:",H;UljU“

DusdCUz-Ulx-1843,

FLOTTER IZ "GRAPHICS®

GRAFPHICS OH

WIMDOW U1, 2, -11.,4.

GREID 4.,1.

Frgs=Fa

PLOT B.,LETCPED

B LI B CR T i

[
S %

P o= 30
[ A ]

gy
LaU e

=1 T N e L
Do I ot By B )

—
=

15

[ynd

DUOSCR OO I OSSN OO OO Y D T OO T LS [ T = S S S S S S NS g oy
Lo A
oD

= o=
IS

21e FOR I=1 TO 194

22 U=tt1+Dg=1

Epcys T=Ul-Beta

243 CRLL LaQUEFPEiH—l,Hl,T,Li*E?
256 Sum=ACAIEFHFLCAL, Trx0l

a8 FOR KE=1 TO H

iy
[x]

Sum=Sum+ACE L ik =10 7K
HE®T K
FOli=P=FA+FIESPC-T+A1#LOGE Ty 1% Sum | FROEBRBILITY THAT RY < U
IF P>, THEH 438
FEHLF

GOTO 448

FLOT U LGTCF

HEST I

FEHUF

FOR I=a TO 184
d=01+Du*1

Fl=1.~-PuIx

IF F1>83. THEH S:28
FPEHLUF

GOTD S28

PLOT U,LGTiF1

HE®T 1

FEHLF

GOTD 226

5

Ly

(]

a3 o= 3D g
ha

AU kU A )

DU e I ) (Y U
om0

)
[x)

DR ) s IR IS CRR GRS C g O U S S S
0o I S D

L) I N PN O R W X Y

=
b

Ted EHD
Ve !
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TR 7377
PROGRAM PLDMandRC (cont'd)

SEa LEF FHGammal: P Gammatk) wia HART, page 222, #5243
b=} P LISTED IWH PLEC

o

DO O8I X R )
[ o B T R |

FHEHD
|
DEF FHF1CR1, x> ! IF1al; AL+
!' LISTED IH PLEC
FHEHD
i
SUE Laguerre{DOUELE M,REAL Alpha,x,Lo#0) ' Lrmalphads:
LISTED IM FLRC
SUEBEMD
!
SUE Mamnt _wia_cumnt (CDOUBLE M, REAL Cumd*3, Mom o3
I LISTED IM FHREC
SUEEND
!
SUE Coeffld_wia momdDOUELE M,REAL Alphia, Beta, Momds A&
ALLACATE EC@:M>
DOUEBLE K,KE1,J, M=
T=1.
FOR K=1 TO H

SRS 1 NN

"
[

[ I o I o )
[y s B X )

[ O S T WY
-
Do ]

T
[y

LU

]
4
5
o>
e
=
T
]
=
5]
1
2

=
=
=4
-
-
=
-
-
R

(o IO U A )

244 T=T+*0(Alphatk s #Bet a ' NORMALIZED MOMEMTS re
3 Mom R =Mom K- T ' Alpha and Beta; eq. 115

= 5

HEST K

=1,

RCB =BCB i =Mams @)
FOR E=1 TO M
El=kE+1

T=1.
S=Momi @

FOR J=1 TO K
T=T+CJ=kK1ssT
S=S+TeMame I
HE=T J

1=0% AT phatk s ok

[ U R N

e p—g =
[ AR Ut

=
=

CUNRASS B RV I O O O R0 B O S e V) [ N
[ ]

AR
o

Bok r=5
HEXT K
Mx=M=+18

IF Mz=dM THEW 1518
Threshold=-7.
TZ=Threshold=2.

V=18, ~Threzhold

GIHIT

PLOTTER IS “GRAPHICS™
GEAFHICS OH

WINDOW &, FLTCMx», T2, @,
LIMNE TWFPE =

[¥u)

[xx]
2o I o A |

SRR

13 o (5
A

- Ty L LD
MU B U X )

[ B
[T o D I R

e I o e e e e o T o e S )

LLgIRDS R Rty ) ) s ) ) B L) [ A SR R GRS O R, - - Y S 7 T
i
o
I

o
15
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PROGRAM PLDMandRM (cont'd)

FiR J=
MOYE J
DRAW T
HE®T J
FoOr J=Tz TO @&

MOWE @, ,J

DRAM M, J

HEWT J

FEHUF

LIME T%FE 1

IMAGE 4D0,204%,M.17DE

FRIWHT * k. Bk Sum"
Sum=9,

8 TO Mx STEF 14
T2
a.

s BTN I R T (N
DUt T I T ot Y S oUI Ao B ot B X

Pl

T T O I Ty T

&,
[ o Do R
]
[}
e
.
<l
Dux}
—
P}
—
=

E=E ko
Sum=Sum+E*E
FRINT USIHG
IF B<W THEH
Y=LETCR
GOTO 13256
IF B:-=% THEN 1248
W=TZ=-LGTu-E2
GOTO 1356
Y=Threzshold
FLOT K,
HEXT K
, FPEHUF
SUEEND
I
SUE Coefflr_wia mom DOUELE M,REAL Alpha, Beta,Momo®s Ao
HLLOCATE EcC@sMa '
DOUELE K E1,J,Mx
T=1.
FOR k=1 TO H
T=T#{Alpha+kKI*Est a P HORMALIZED MOMEMTS r
Momo K y=Momn (K- T ' Alpha and EBeta; =4q.
HE=T K
[=1,
HCB=BCAr=Mama)
FOR k=1 TO M
El=K+1
T=1,
S=MomC K =ACAn
FOR J=1 TO k-1
T=T*{JI~E1)-T
S=5-TeACT
HERT J
IF K MOD 2=1 THEH S=-%
ROk =5
F=G#CR phatk ) ok
SHSORCR

HE®T K

LU >

,.
0
.

Dax

sE LB, Sum

DOTRES B SR I OO O
D

Dex]
!
—

—
o
[}

o

e B Bt B Mt Bt Y I I |

e
Dol

Lo Ci R R O]
DU O o I X )

oo
b BRI L I R T (i

o
oo
A o R S R )

oo

=
]

o
S BN ]

[\ A ]

o
=

—
=

Do ux]
=

=
ex]

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1a
1
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1

o o]

T
[x)

Do U o B U kY]

IISI [y G‘I Dx ]

MR
UK

(A )
[=a}

XX
XX

‘124



2138
2144
2154a
21e@
2178
2189
2138
2zoa
2218

RNV CR TV O PR O5 T U SRR CSR IN (S (%

L B R U N B NS v S RN I s S ) S CRRY PV I N

2448
2450
2460
2478
2480
2495

LI GO OV T A DSCRN O (NI O% I OO Y SR DV IRE LRI I OO T O% T (I C T (% B (Y (RO O A

I
$a
L
D000 R0 0D 0000050 I D SRR

AR ON I cURY R B )Y

]
n
N

[x]

o
[ex]

PROGRAM PLDMandRM (cont'd)

Mx=M=+18

IF Mx<M THEM 21328
Threzhold=-7.

TEZ=Threzholds2.

M=18., ~Threshaold

GIHIT

FLOTTER IS “GRAPHICS™"
GRAFHICE OH

WIMDOM 8. ,FLTMx>,T2,8.

LIME TWPE 3

FOR J=@ TO Mz STEP 1@

MOME J,TZ2

IRAW J,8.

HE=ST J

FOrR J=T2 TO 8

MOVE @, ,J

IRAW M2, J

HERT J

FEHUP

LIME TYFE 1

IMAGE 40,204%,M.17DE>

PRINT " [ Bok D
Sum=0,

FOR K=8 TO M
E=EC kD
Sum=Sum+EB+E
PRIMT USIHMG 232
IF B<% THEHW 24
Y=LGTCE:

GOTD zZ47a

IF Ex=% THEM 24&8
WY=TZ-LET-E2

GOTO 2474 ‘
Y=Threshold

PLOT K,%

HEAT K

FEHUF

SIUBEEHD

!

SE3E, By Sum
5

SUE Moment = DOUELE M, REAL PE,Mono sl

LIZTED IM PHIMZENM
SUEBEMD

Sam "

HOIZE

TR 7377
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PROGRAM pLDMandRM

[ta =
T

! COMTIHUOWES PART OF SHOT MOISE PIF, potuly COEFFICIEMTS OF GEMERALIZED
! LAGUERREE EXFPAMSION FOUMD DIRECTLY AMD RECURSIVELY YIA MOMEMTS

M=ra 1 MAXIMUM ORDER OF APFROSIMATION; HUMEER OF MOMEMTS REGUIRED
DOUBLE M, I, H,K ! TMTEGERS < 2+31 = 2,147,423,848
FEDIM Mom{B:M>, AcgrMr, Lo@smy

FEAL Mom(@: 198, AC0: 109, L03: 1650
CHLL Momentz=oM,P3, Momgxs
Center=fomdl rs 1HmlU‘
F'-Hnmk:" Momi@r~-Centerslenter
Rms= (R

WU RN
i

i LA A I OO
[xa}

ey
[un]

Fa IS STEF AT ORIGIHM

CEMTER OF PIOF peoiul

MEARM SQUARE SFREAL OF podul
EMZ SPREAD OF pooul

eE]
D v ]

=
[ax]

5] H]pha@=-~nfkr+lhnfhr“F’—l. THE CHOICES Alpha=R1phal AMD
5] Eetal=R2-Center BEeta=Eet ad WOULD MAKEE AClr=Ac2a=
5] Alpha=.74

5 Eeta=z.

=
o

CALL Coeffld_wia momiM,Alpha, Beta, Momo®l, Ao#i ! *DIM
CALL Cosfflr_wia momiM,Alpha, Beta, Momo#s, Aos0 ! FHM
FRIMT "Center = ";Centesr
FRIMT "Emz ="j;Rms
Fi=1.s(Beta*FHGanmacAlpha+i, 20
IMFUT "ORDER AMD LIMITS:",H,U1,UZ
FRINT "ORIDER AWD LIMITS:" ,H;Ul;us
Du=duz-Ut 1848,
FLOTTER I3 "GRAPHICS"
GRAFHICS OH
MIMDOW D1,U2,8.,.15

I AL I SO L B o S W Y
xa]

A
Dol

-
=
hx]

-t
DA A

D=01+Dy*TI
T=U-Beta
CALL LaguerrediM,Alpha, T,Lo%n
Sum=ACAa:
FOR =1 TO H
Sum=Sum+ACE 2L 0D
HE®T K
F=F1#EXP I -T+AlphasLOGCTH »*Sum ! FLF OF REY AT U
FLOT U, F
HE®T I
FEHLF
GOTD Z@ag
EHD
! USE ROUTIHES IM PLIM&REM

T
[

DO S R N B T

R
[ R o I ]

WU B o SR ) R O I O I %
(A}

303 D0 o

DUy v ]
[ A o R I o I A

B ORN CS 8
| A
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